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“As when a man, about to sally forth, 
Prepares a light and kindles him a blaze 
Of flaming fire against the wintry night, 

In horny lantern shielding from all winds; 
Though it protect from breath of blowing winds, 
Its beam darts outward, as more fine and thin, 

And with untiring rays lights up the sky: 
Just so the Fire primeval once lay hid 
In the round pupil of the eye, enclosed 

In films and gauzy veils, which through and through 
Were pierced with pores divinely fashioned, 
And thus kept off the watery deeps around, 

Whilst Fire burst outward, as more fine and thin. 
 

The gentle flame of eye did chance to get, 
Only a little of the earthen part. 

 
From which by Aphrodite, the divine,  

The untiring eyes were formed. 
 

Thus Aphrodite wrought with bolts of love 
 

One vision of two eyes is born.” 
 
 

Empedocles1 (5th centure BC) 
 
 
 
 
 

“Nun ist es nicht zuviel gesagt, dass ich einem Optiker gegenüber, der mir ein 
Instrument verkaufen wollte, welches die letztgenannten Fehler hätte, mich 
vollkommen berechtigt glauben würde, die härtesten Ausdrücke über die 
Nachlässigkeit seiner Arbeit zu gebrauchen und ihm sein Instrument mit Protest 
zurückzugeben. In Bezug auf meine Augen werde ich freilich letzteres nicht thun, 
sondern im Gegentheil froh sein, sie mit ihren Fehlern möglichst lange behalten zu 
dürfen.” 

 
Hermann von Helmholtz2 (1821-1894) 
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List of commonly used abbreviations and variables 
 
 
Abbreviations 
 
 
Wavefront analysis 
 
FFT = Fast Fourier Transform 
MTF = Modulation Transfer 

 Function  
OTF = Optical Transfer Function 
PSF = Point Spread Function 
PTF = Phase Transfer Function 
RMS = Root-Mean-Square 
RMStot = Total RMS 
RMSHO = Higher Order RMS  
ZRMS = Zonal RMS 
 
Names of devices 
 
CSA = Curvature Sensing 

 Aberrometer 
(c)SLO = (confocal) Scanning Laser 

 Ophthalmoscope 
COAS = Complete Ophthalmic 

 Analysis System 
HS = Hartmann-Shack 
LRT = Laser Ray Tracing 
OPD = Optical Path Difference 
SH  = Shack-Hartmann 
VFA = Visual Function Analyzer 
 
Ophthalmic terms 
 
ASE = Aberrometer Spherical 

 equivalent 
CSE = Clinical Spherical Equivalent 
LoS = Line of Sight 
OD = Oculus Dexter; right eye 
OS = Oculus Sinister; left eye 
 

Terms used in Figures 
 
N = Nasal (i.e. side of the nose) 
T = Temporal (i.e. side of the 

 temple) 
S = Superior (i.e. upper side) 
I = Inferior (i.e. lower side) 
 
Optical terms 
 
APD = Avalanche Photo Diode 
CCD = Charge Coupled Device 
LED = Light Emitting Diode 
NA = Numeric Aperture 
 
Names of methods, equations, points 
 
ART = Algebraic Reconstruction 

 Technique 
COC = Center of Curvature 
ROC = Radius of Curvature 
GS  = Gerchberg-Saxton 
POI = Point of Incidence 
TIE = Transfer of Intensity Equation  
TWE = Transfer of Wavefront 

 Equation 
 
Organizations 
 
OSA = Optical Society of America 
ESCRS = European Society for Cataract 

 and Refractive Surgery 
FRO = (Belgian) Fund for Research 

 in Ophthalmology 
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Variables 
 
 
Coefficients and indices 
 
n, m, j, … : index names 
N, M : maximum index/ number 
ak, bk,… : polynomial coefficient 
Wijk : Seidel coefficient 
 
Coordinates  
 
o : origin 
rr = (x,y,z) : Carthesian coordinates in real 

 space (pupil plane) 
(u,v,w) : Carthesian coordinates in 

 Fourier space (retinal plane) 
(ρ,θ) : polar coordinates 
(δu,δv) : focal shift 
 
General optical variables 
 
λ : wavelength 
k : wavenumber 
n : refractive index 
r : radius of curvature 
cn : curvature (= 1/ r) 
K : conic constant 
d : thickness of optical medium 
f : focal distance 
I : intensity 
A : amplitude 
φ : phase/ wavefront aberration 
 
Polynomials 
 
uj : general polynomial 
Zn : Zernike polynomial (single 

 index) 
Zn

m : Zernike polynomial (double 
 index) 

Rn
m : radial component of Zernike 

 polynomial 
Θm : angular component of Zernike 

 polynomial 
Nn

m : Noll normalization factor for 
 Zernike polynomial 

Pk : Legendre polynomial 
 
General laminography (Chapter IV) 
 
P, Q : point 
M : magnification 
Sk : source position 
ψ : angle of incidence 
h : distance from source to focal 

 plane  
d : distance from focal plane to 

 image plane 
δm : horizontal resolution 
δn : vertical resolution 
µ : attenuation 
α : attenuation factor 
 
Refractive laminography (Chapter V) 
 
ψ : angle of incidence 
θ : angular direction 
γ, γ’ : Snell’s angles 
αm : skew ray angle (2D 

 raytracing) 
αm : angle in (y,z) plane (3D 

 raytracing) 
βm : angle in (x,z) plane (3D 

 raytracing) 
∆zm : difference along optical axis 

 between point of incidence 
 and surface apex 

Rm : local radius of curvature 
χm : angle between optical axis and 

 local radius of curvature in 
 COC 

 
Curvature sensing (Chapter VI) 
 
Γ : area in which TIE is defined 
Ω : edge of Γ 
G(x,y;x’,y’): Green’s function 
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 Prologue: aim of this work  
 
 
Most eyes are far from perfect. Every eye presents a unique set of optical aberrations that 
influence the incident light, ranging from slightly blurred vision to distorted and double sight.  
Till recently the only way to compensate for these ocular aberrations was by adding a new 
optical element. This could be done by either spectacles or contact lenses, both of which 
require only general information about the ocular refraction. The results obtained are 
satisfactory for most patients, but not optimal as small, uncorrected aberrations remain.  
With the introduction of refractive surgery other methods became popular that modified the 
cornea in such a way that aberrations would be minimized, using corneal incisions or laser 
ablations. The first generation of laser systems could only make similar corrections as could 
be achieved using spectacles, but they quickly evolved into flexible platforms theoretically 
capable of sculpting the inverse of the ocular wavefront aberrations on the anterior ocular 
surface. However in order to achieve the best possible result with these systems very detailed 
knowledge of the ocular aberrations is imperative.  
 
One way to obtain this knowledge is by studying the aberrations’ origins, as is presented in 
this work. Here a number of different aspects influencing aberration measurement and the 
localization of the aberration sources within the eye will be highlighted: 
 
The first chapter will introduce many of the concepts commonly used in this field of optics, 
such as the definitions of wavefront aberrations, wavefront measurements, a number of 
derived quantities (RMS, PSF, MTF,…) and a basic description of the different aberrometer 
types. 
 
Part I focuses on the similarities and the differences between 6 aberrometers that are on the 
market today. How reliable are the measurements provided by these machines? And will each 
of them give you the same result if you apply them to the same eye under clinical 
circumstances? The accent lies not on which device is ‘the best’, but rather on the minimal 
technical requirements any good aberrometer should have (in our opinion) in order to provide 
reliable and reproducible measurements. (Chapter II) 
In an effort to determine the aberrometer’s clinical reliability, we have performed a series of 
measurements on a fixed group of subjects and compared the results statistically. These 
results are presented in Chapter III. 
 
After establishing the quality of the wavefront measurements, we can start the search for the 
aberrations’ origins in Part II. This search will lead past known reconstruction techniques in 
tomography and their properties (Chapter IV). Next these methods are redefined to take the 
ocular refraction into account, which allows making a 3D phase reconstruction of the anterior 
eye segment from a number of off-axis wavefront measurements. The description of this 
refraction corrected laminography technique and the obtaining of the off-axis measurements 
are given in Chapter V. 
 
In Part III, curvature sensing is introduced as a new high-resolution wavefront sensing 
method. These high resolutions can be used to study wavefronts in greater detail, but also 
obtain better off-axis measurements for the laminographic reconstructions described above. 
Chapter VI describes curvature sensing, a large number of the reconstruction techniques in 
the literature and the properties and verifications of these techniques for general 
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microscopical applications. This is elaborated in Chapter VII to a proof of principle setup for 
the measurement of lenticular aberrations.  
 
Finally a number of conclusions are given in the Epilogue, as well as a number of future 
research lines. 
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Chapter I  Introduction to ocular wavefront aberrations 
 

I.1 Historical introduction to aberrometry 
 
The eye has always fascinated both layman and scientist, either for its romantic nature or in 
an effort to understand the deeper principles of vision. It has inspired vast numbers of 
theories, some of which still hold today, but also many that have been forgotten in time or 
were reduced to historical footnotes. This paragraph provides a far from complete overview of 
what aspects of vision have been studied before by past generations of scientists and attempts 
to place them in a historical context. 
 
I.1.1 Physiological optics3 
 
Already in the Antiquity a theory circulated among the ancient Greeks that eye sight was the 
result of fire particles that were emitted by the eye to meet similar particles coming from an 
object1. When these particles meet, vision is achieved. This theory by Empedocles of Acragas 
(5th century BC) is often referred to as the “Fire of the Eye” or the “tentacle theory” and was 
accepted by great philosophers and scientists such as Plato, Euclid and Ptolemy. This 
widespread belief lasted until well in the Middle Ages, despite the notion of Aristotle that  
 

“If the visual organ proper really were fire, which is the doctrine of Empedocles, […], 
and if vision were the result of light issuing from the eye as from a lantern, why should 
the eye not have had the power of seeing even in the dark?4” 
 

Aristotle had the more modern conception that things are seen by influences resulting from 
their presence rather than from rays emerging from the eye. Aristotle was also the first to 
report myopia and hyperopia, and discovered the change in ability to focus with age. Only in 
the 16th century a first scientific explanation was given when Francis Maurolycus incorrectly 
suggested that the curvature of the crystalline lens5 was its main cause.  
Meanwhile in the 10th century Cairo Alhazen spent much of his time conducting experiments 
involving a dark room with a hole in it. In one experiment he hung five lanterns in front of the 
hole and noticed that there were five images on the opposite wall in the dark room. The 
placement of an obstruction between one of the lanterns and the hole resulted in the 
disappearance of the opposite image on the wall. As the lantern, the obstruction and the hole 
were in a straight line this demonstrated that light traveled in straight lines and that, even 
though the light from the five lanterns all traveled through the same hole at the same time, it 
did not get mixed up. Alhazen proposed that this is how the eye worked. This was the first 
scientific description of the ‘camera obscura’. 
In the 15th century Leonardo da Vinci supposed that vision was achieved by an image on the 
retina, which he identified as the sensitive receptor of the eye. But he struggled with the 
question how this image was optically inverted to be upright before being sent to the brain: 
 

“Necessity has provided that all the images of objects in front of the eye shall intersect 
in two places. One of these intersections is in the pupil, the other in the crystalline lens; 
and if this were not the case the eye could not see as great a number of objects as it 
does. […] No image, even of the smallest object, enters the eye without being turned 
upside down; but as it penetrates into the crystalline lens it is once more reversed and 
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thus the image is restored to the same position within the eye as that of the object 
outside the eye.6” 
 

When Johannes Kepler studied the eye 100 years later he proposed a ray tracing model of the 
eye. In order to do this he assumed that every point on a light source emits rays of light in all 
directions, but only those rays that pass through the pupil can enter the eye. This way a cone 
of light rays can be defined with the top in the point source and the circular base in the pupil. 
In a normal eye all of the rays in this cone are then refracted to meet again at a single point 
on the retina. If the eye is not normal, the second short interior cone comes to a point not on 
the retina but in front of it or behind it, causing blurred vision. With this simple model he 
managed to explain not only ametropia, but also the effects of eyeglasses that were already in 
use for more than three centuries. Before Kepler nobody had been able to explain this. On the 
subject of the nature of the retinal image he wrote: 
 

“Thus vision is brought about by a picture of the thing seen being formed on the 
concave surface of the retina. That which is to the right outside is depicted on the left on 
the retina, that to the left on the right, that above below, and that below above.7” 
 

with which he disproved Leonardo’s assumption. Kepler was also the first to define important 
concepts, such as the far point of the eye and identified the macula, the central zone of the 
retina, as the location of sharpest sight. 
At the same time the Jesuit priest Christoph Scheiner experimentally verified Keplers theory 
on the retinal image by mounting an ox eye with the sclera removed in a diaphragm and 
observing the inverted image. Scheiner was also the first to investigate the accommodation of 
the eye on objects at different distances and to observe that no accommodation is possible in 
the absence of the crystalline lens. Further he measured the refractive indices of the different 
optical media in the eye and made the first anatomically correct representation of the eye 
(Figure I-1). But his most important invention for the purposes of this thesis was the Scheiner 
disc, the first aberrometer. 
In the late 18th century Scheiner’s observations were refined by the English physician Thomas 
Young, who found that accommodation occurs due to curvature change of the crystalline lens. 
This was published in an 1801 paper in which he sums up a large deal of the physiological 
optics known at the time8. At the same time physiologist Johannes Purkinje found the reason 
for these curvature changes: a contraction of the ciliary muscle around lens. Purkinje also 
studied the reflections of light of the corneal and lenticular surfaces in an attempt to estimate 
their refractive powers. These reflections are now named in his honor.  
 

 
Figure I-1: Scheiner’s schematic eye (1619)9. 
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In 1867 Hermann von Helmholtz laid the foundations of the modern physiological optics by 
his book ‘Handbuch der Physiologischen Optik’10. Here he gave a very complete oversight of 
the state of the art at his time and added studies on accommodation, color perception and the 
way both eyes work together to form a single image. Another one of his accomplishments is 
the invention of the ophthalmoscope, a device that allows studying a patient’s retina directly.  

 

I.1.2 History of wavefront aberrations 
 
In the previous section the early work on ametropia has been discussed, which was mostly 
done by Kepler and Scheiner. It was shown to be the result of a mismatch of the corneal 
curvature with the length of the eye, combined with the dioptric power of the lens. When the 
eye is too short (or the cornea too flat), the image of an object at infinity is formed behind the 
retina; this condition is known as hyperopia or farsightedness. On the other hand when the eye 
is too long (or the cornea too curved) the image is formed in front of the retina. This is called 
myopia or nearsightedness. Both conditions can easily be corrected by putting either a 
positive or negative spherical lens in front of the eye in order to move the image to the retina. 
Apart from being too flat or too curved a cornea can have more irregular shapes that influence 
the optical quality of the eye as was first mentioned in Young’s 1801 paper. This was 
developed further in the mid 19th century when Seidel developed his theory of geometric 
aberrations11, which would later serve as a theoretical base for the aberration theories at the 
time. In this formalism ocular aberrations were divided into defocus, astigmatism, coma, 
spherical aberration, distortion and field curvature12. 
But after the first detailed aberrations measurements in the experiments of Ivanoff13 and 
Smirnov14 it quickly became clear that a more general idea of aberrations was needed to 
explain ocular aberrations. In stead of a system of geometric aberrations, as proposed by 
Seidel, they suggested that a wave description of aberrations might be more accurate to 
describe the irregular patterns seen in aberration maps.  
When Howland introduced the first aberrometer15 that was practical to use in 1977, 
polynomial coefficients were used for the representation of wavefronts. To date, this is still 
the most commonly used data representation for this purpose. This will be discussed in further 
detail in I.4.4b). 
 

I.2 The eye’s optical system 
 
I.2.1 Physiology of the eye 
 
The optics of the human eye is composed of the following optical components (Figure I-2): 
 

• Cornea: a strongly curved fully transparent structure of approximately 500µm thick. It 
is the first and strongest refracting surface of the eye. 

• Anterior chamber: a volume of transparent watery liquid (aqueous humor) between 
the cornea and the crystalline lens. 

• Pupil: circular opening in the iris, a colorful membrane located in front of the 
crystalline lens, that can be adjusted in diameter. Serves mainly to regulate the 
light influx and to reduce the effects of aberrations. 
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Figure I-2: anatomy of a human eye. All optical media have grey shades, where darker 
shades indicate higher refractive indices. 

 
• Crystalline lens: biconvex body consisting of a large number of transparent fiber-

shaped cells. The optical density of these fibers increases towards the core of the 
lens. Together with the pupil it is the only adjustable part of the eye.  

• Vitreous humor: transparent watery liquid that fills the largest part of the eye ball. 
• Retina: light sensitive tissue, basically an extension of nerve fiber endings leading 

directly to the brain. The different structures will absorb and scatter most of the 
incident light, causing the light to loose most of its coherence. About 4% of the 
light is reflected back in the direction of the pupil.  

 
Of these media the cornea and the lens are the refractive elements that project an image on the 
retina. The central part, the fovea, has a very high density of photoreceptor cells making it the 
region that provides the sharpest possible vision. Photoreceptors are divided into two classes: 
 

• Rods: cells highly sensitive to light of any wavelength in the visual range; incapable of 
color sight. Located mainly in the peripheral retina. 

• Cones: cells capable of color sight, but less sensitive to low intensities then rod cells; 
can be split up in three kinds with each a specific spectral sensitivity: R-, G, and 
B-cones (with peak sensitivity in respectively red, green and blue). Located mainly 
in the fovea. 

 
 
I.2.2 Mathematical eye models 
 
In order to calculate the optical properties of the eye a mathematical eye model is 
indispensable. That is why in the last 100 years a lot of them have been defined for all kinds 
of different purposes. But for brevity we restrict ourselves to highlighting the following four 
models as they are the most famous ones at this moment. Although these models serve as an 
approximation of the real dioptric system of the eye, it is imperative to keep in mind that 
individual eyes of patients can strongly deviate from these models16. 
Specific parameters are needed for the definition of refractive surfaces in these models, which 
can be chosen spherical or aspherical. The most general form for such a surface is17: 
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with (x,y) coordinates in a plane perpendicular to the optical axis and z the coordinate along 
the optical axis. The most important parameter in formula I-1 is the radius of curvature r that 
describes how convex (concave) or flat a spherical surface is. This spherical surface is then 
corrected by means of conic constant K that serves, together with the higher order aspherical 
constants Ai, to give the spherical surface an aspherical deformation. The shape of this 
deformation depends on the K-value: 
 

• K < -1  : Hyperboloid 
• K = -1        : Paraboloid 
• -1 < K < 0  : Ellipse rotated about its major axis 
• K = 0         : Sphere 
• K > 0  : Ellipse rotated about its minor axis 

 
Other parameters needed for the definition of these eye models are the thicknesses d of the 
optical media and the refractive indices n (for a specific wavelength λ). For our purposes the 
constants Ai will be disregarded.  
 
 
a) Gullstrand exact eye model18 
 
This model was devised by Allvar Gullstrand (1862-1930) in order to better understand the 
image formation in the eye. This model is very complete, separating the core and the outer 
layers of the lens into two different media (see Table I-1, Figure I-3)*. The accommodation is 
also taken into account, with different sets of parameters for the ‘rest’ situation and 
accommodated situation. For the work associated with this eye model Gullstrand was 
awarded the Nobel Prize in Medicine in 1911. Some of Gullstrand’s other achievements 
include his PhD thesis on astigmatism19, which refined Young’s theory on this subject, the 
invention of the slit lamp and of an improved ophthalmoscope. 
 
 
b) Navarro wide angle schematic eye model20,21 
 
This model (1999) is very interesting because it was designed to include the possibility of 
simulating the image formation away from the optical axis for a number of wavelengths. It is 
composed of four aspherical surfaces and one aperture stop (pupil). The optical properties 
(Seidel aberrations, chromatic aberrations, MTF) of this model were found to be in reasonably 
good agreement with experimental values for eccentricities up to 60°. This was later also 
verified for the off-axis wavefront aberrations of the model22.  
Like the Gullstrand model, this model also contains both parameters for the accommodated 
and the non-accommodated eye (see Table I-1, Figure I-3).  
                                                 
* Actually the Gullstrand model contains a gradually changing refractive index (‘gradient index’) from the shell 
towards the core of the crystalline lens by means of formula: 
 n(r,z)= 1.406 - 0.0062685 (z-z0)2 + 0.0003834 (z-z0)3 - (0.00052375 + 0.00005735 (z-z0)  
  + 0.00027875 (z-z0)2 ) r 2 - 0.000066716 r4  
with r is the distance in a plane perpendicular to the optical axis and z the distance along the optical axis. z0 is 
chosen in the middle of the crystalline lens (so z0 = 1.7 mm). This function gives a central index of 1.406 and a 
surface or edge index of 1.386, the values given in Table I-2. 
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Table I-1: definition of the different eye models 
 

 
 

 
Figure I-3: definition of the three eye models. (Ca: anterior cornea; Cp: posterior cornea; 
La: anterior lens; Lna: anterior lens nucleus; Lnp: posterior lens nucleus; Lp: posterior lens)   

 

Name Gullstrand model without 
accommodation23 

Navarro wide angle model  
without accommodation 

Reduced Indiana eye 

Parameter 
(in mm) 

r  d  n  K r  d  n 
(589.3nm) 

K r  d  n  K 

Air   1    1    1  
Anterior cornea 7.7 0.5 1.376 0 7.72 0.55 1.376 -0.26 5.55 1.57 1.333 0.6 
Posterior cornea 6.8 3.1 1.336 0 6.50 3.05 1.3374 0     

Pupil +∞ 0 1.336 0 +∞ 0 1.3374 0 +∞ 20.65 1.333 0 
Anterior lens 10 0.54 1.386 0 10.20 4 1.42 -3.1616     
Anterior lens 

nucleus 
7.91 2.42 1.406 0         

Posterior lens 
nucleus 

-5.76 0.64 1.386 0         

Posterior lens -6 17.2 1.336 0 -6 16.32 1.336 -1     
Retina     -12        
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c) Reduced eye model 
 
The easiest model possible is a model with only one single refracting surface. At first this was 
modeled by a spherical interface between air and water. But as these interfaces have the 
problem that they introduce large quantities of spherical aberrations, this was replaced by 
means of the ‘Reduced Indiana Eye’24 (see Table I-1, Figure I-3), an evolved version of the 
‘Chromatic eye’25. This model contains only one elliptical surface (instead of spherical). The 
refractive index within the eye model depends on the wavelength and is defined by: 
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006662.031848.1)(
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+=
m
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µλ

λ         (I-2)  

 
Even though this model is very simple, it has been found to match the ocular chromatic 
aberrations and spherical aberration rather closely. 
 
 
d) Optical properties of these eye models 
 
According to geometrical optics any optical system composed of several optical elements can, 
when considered along the model’s optical axis (i.e. the paraxial approximation) be 
characterized by means of 6 cardinal points. These points are: 
 

• Focal points f1, f2: point to which a parallel beam entering the system will converge. f1, 
called ‘front focal point’, is the convergence point for a parallel beam entering the 
system from behind; analogous for the back focal point f2. 

• Principal points P1, P2: cross-section points of the two principal planes with the optical 
axis. These principal planes are defined as the collection of points in which the 
extensions of an incident beam parallel to the optical axis and the exiting beam on 
the other side of the optical system intersect. 

• Nodal points N1, N2: two points on the optical axis with the distinct property that when a 
beam is directed at one of these points it seems to emerge from the other point on the 
other of the optical system. 

 

Table I-2: optical properties of the different eye models 

Cardinal point Gullstrand Navarro Reduced 
Indiana Eye* 

λ unknown 589.3 nm 589.3 nm 
P1 1.35 mm 1.58 mm 0 mm 
P2 1.60 mm 1.89 mm  
N1 7.08 mm 7.14 mm 5.55 mm 
N2 7.33 mm 7.45 mm  
f1 -17.05 mm -16.55 mm -16.67 mm 
f2 24.4 mm 22.35 mm 22.22 mm 
P 58.64D 60.42D 60 D 

 

                                                 
* Since the Reduced Indiana Eye only contains one refractive surface, both principal points will coincide, as well 
as the nodal points. 
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Table I-2 gives an oversight of the cardinal points for the different eye models. The values for 
the focal points seem to correspond well with each other, as well as the total refractive power 
P of the system. However the cardinal points seem to vary more between the different 
models. 
 
 

I.3 What are wavefront aberrations? 
 
Light can be considered as a series of waves emanating from a source. If the light source is an 
infinitely small point source the resulting waves will be spherical, which will at large 
distances approximate plane waves. Using a lens these waves can be manipulated to converge 
towards or diverge from a specific point in space, called the focal point. This point is located 
at a focal distance f from the lens (see I.2.2d).   
If a point source is placed in the focal point of an ideal lens, this lens will transform the 
incoming spherical waves into perfectly plane waves (see the dashed lines in Figure I-4). An 
imperfect lens however, such as a lens with local variations in curvature or refractive index, 
will superimpose the plane waves with a distortion (solid lines in Figure I-4). The difference 
between the distorted waves and the undistorted waves is called the wavefront aberration φ of 
this lens. It can easily be seen that the amplitude of wavefront aberrations directly depends on 
the quantity and the size of the optical imperfections causing them.  
In geometrical optics rays are used in stead of waves, but it suffices to know that these 
aberrated rays are perpendicular to the wavefront aberrations as described above. 
A wavefront sensor, or aberrometer, is a device designed to measure the amount of 
aberrations present in an optical system. 
 

 
Figure I-4: definition of wavefront aberrations. 

 
 

I.4 Wavefront sensing and reconstruction  
 
I.4.1 Focal shift 
 
Every wavefront sensor on the market today is in one way or another based on focal shift. 
This is a basic property of a perfect lens that, regardless of the point of incidence, an incident 
beam parallel to the lens’ optical axis is always refracted through the focal point (see dashed 
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beam in Figure I-5). However when the lens has some aberrations this is no longer true and 
each incident beam is refracted through a different point of the focal plane (solid beam in 
Figure I-5). The distance within the focal plane between the cross-section point of the 
refracted beam and the focal point is called the focal shift and is directly proportional to the 
local gradient of the lens’ wavefront aberration. As rays are perpendicular to the local 
wavefront, each local wavefront tilt gives rise to an equal tilt added to the refracted beam*.26 
In the human eye the spot pattern can be measured either on the retina, or in a plane that is 
optically conjugated with the retina. In both cases it must be kept in mind that the image of 
the spot pattern has passed through the aberrated eye optics twice. There where the subject 
can observe the Point Spread Function (since from his point of view the light only went 
through the optics just once), a fundus camera registers the autocorrelation27 (rather than the 
autoconvolution) of the Point Spread Function image. All information regarding odd 
aberrations is lost this way.  
Every objective wavefront sensing technique is confronted with this ‘double-pass’ problem, 
but in most cases it can be reduced considerably by turning it into a ‘one-and-a-half- pass’ 
method. Here a narrow sample beam is used, making sure that the spot on the retina is only 
aberrated by the usually very mild local aberrations. The reflection of this narrow spot now 
serves as a diffuse secondary source that homogeneously illuminates the pupil opening from 
behind. When the light passes through the lens and cornea it is distorted by the ocular 
wavefront aberrations. 
In practice it can be difficult to determine an accurate value for the focal shift, since due to the 
local aberrations of the lens the point size can be rather large. This is remedied by calculating 
either the centroid (the geometric center of the spot) or the ‘center of mass’, which is given 
by28: 
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with (u,v) the coordinates in the focal plane and (ρu, ρv) the coordinates of the center of mass.  
Usually the center of mass is preferred as the centroid can sometimes be hard to determine. 
A more mathematical description can also be given. Suppose (x,y) are the coordinates of the 
incident beam in the lens plane and φ(x,y) the wavefront aberration of the lens in that location. 
If the horizontal and the vertical vector components of the focal shift are given by δu(x,y) and 
δv(x,y), then we find that:  
 

 
Figure I-5: focal shift 

                                                 
* A more elaborate explanation on this subject can be found in reference [27]. 
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with f the local length of the lens causing the focal shift. By mapping (δu(x,y), δv(x,y)) for a 
grid of beam entry locations on the lens, one can directly map the gradient of the wavefront 
aberration. From this gradient data the wavefront aberration φ(x,y) can be reconstructed 
through integration.  
 
 
I.4.2 Wavefront reconstruction 

a) Integration by polynomial fit29, 30 
 
In this method it is assumed that the wavefront aberration φ(x,y) can be represented as a linear 
combination of orthogonal polynomials Zk(x,y) defined on the unit circle (such as e.g. 
Taylor31, 32, Legendre33, Zernike34, 35, 36, Didon37 or Karhunen-Loève38, 39 polynomials). So in 
other words: 
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with an the polynomial coefficients.  
Suppose now a set of K experimentally determined focus shifts in points (xk,yk) (k = 1:K) in 
the pupil plane. Then the aim is to solve a system: 
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to determine the coefficients an. However, the local wavefront values ( )kk yx ,ϕ  remain 
unknown in this problem, rendering a direct polynomials fit impossible. Instead the K focal 
shifts (δu(xk,yk), δv(xk,yk)) have been determined, to which the partial derivatives of φ(x,y) can 
be fit: 
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Here the n = 0 term is disregarded since for each polynomial series this is a constant. The 
focal shift vector R can now be defined as: 
 
 ( ) ( ) ( ) ( )[ ]TKKKK yxvyxvyxuyxuR ,,...,,,,,...,, 1111 δδδδ=                  (I-8) 
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The most straightforward way to determine estimators ân for coefficients an is by using a 
least-squares polynomial fit. The function to be minimized is then29: 
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After minimization with respect to âm (m = 1,…,N) and some simplification the following set 
of N equations is found: 
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or written in matrix form: 
 
 DR = DDTÂ                     (I-11) 
 
with Â = [â1, …, âN] and  
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so finally the result is given by: 
 
 Â = (DDT)-1 DR                    (I-13) 
 
which can be filled in in formula (I-5) to obtain the estimated wavefront. 
 
 
b) Integration by direct integration 
 
As before, this method starts from K experimental focus shifts in points (xk, yk) (k = 1:K), 
which form a rectangular grid in the pupil plane. It assumes that if the phase value in one 
central point (x0,y0) is known, the phase in the rest of the pupil area can be reconstructed. 
Choose e.g. φ(x0,y0) = 0, then the phase value in a nearby point (x0 + δx,y0) is given by40: 
 

( ) ( ) ( ) fxxxuyxyxx /,,, 000000 δδϕδϕ ++=+                (I-14)  
 

with δu(x0,x0+δx) the focal shift component in the u-direction. A similar formula can be used 
for points at a distance ∆y in the y-direction, or general points. The problem with this method 
is that it is very sensitive to noise on the (δu(xk,yk), δv(xk,yk)) data. Also it is hard to make this 
procedure numerically stable.  
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Recently Hamam41 described a variation of direct integration, which starts from the 
observation that the diameter s of the focal spot depends on the wavelength λ of the used light, 
the focal length f and the diameter D of the lens used: 
 
 Dfs /λ=                     (I-15) 
 
and an approximation of the focal shift formula (I-4): 
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with δWx the maximum change in wavefront over the aperture of the lens in the x-direction 
(i.e. the component causing the largest focal shift), and δWy the maximum change in the y-
direction. When the focal shift is increased by one spot diameter s, this becomes: 
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This provides a direct way to determine the change in wavefront: if the wavefront increases 
by one wavelength λ over the lens diameter, the focal shift increases by one spot size s 
relative to the unaberrated position. So simply measuring the focal shift in spot size units s 
provides (δWu(x,y), δWv(x,y)). Using a direct integration algorithm as discussed above the 
wavefront can be reconstructed. 
In the commercial COAS device (WaveFront Sciences) the direct integration technique is 
implemented in a stable way, however the exact algorithm has not been published to our 
knowledge. 
 
 
I.4.3 Reference axes 
 
When measuring wavefront aberrations is it important to know in which reference axis system 
these aberrations are defined. In optics usually the convention of the optical axis is used. 
However in case of the human eye no clear definition of the optical axis exists since the 
crystalline lens and the corneal apex are slightly tilted and decentered with respect to each 
other. In order to remedy this two different reference axes were defined for the measurement 
and calculation of ocular aberrations (definitions taken from [42]):  
 

• Visual axis (Figure I-6a):  
 The (broken) line connecting the fixation point to the eye’s first nodal point on the 

one side and the second nodal point to the center of the fovea.  
• Line of Sight (Figure I-6b):  

The (broken) line passing through the center of the eye’s entrance and exit pupils 
connecting the fixation point to the fovea (or in other words: the path of the chief 
ray going from the fixation point to the retinal fovea).  

 
As a convention ocular aberrations are measured with respect to the Line of Sight, and the 
pupil center is considered as the origin of a Cartesian reference frame. 
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Figure I-6: definition of the visual axis (a) and the line of light (b) (taken from [42] ). 

 
 

I.4.4 Polynomials used for wavefront reconstruction 
 
Since the pupil of a human eye is approximately circular, polynomials defined on the unit 
circle are needed for the polynomial wavefront reconstruction described in (I.4.2a). In the 
following a short list is given of the polynomials used for this application  

a) Seidel primary aberrations 
 
The Seidel aberrations are a number of non-orthogonal functions that naturally follow from 
the geometrical theory of aberrations in the paraxial approximation (i.e. near the optical axis 
of the system). Until Seidel’s paper11 the description of the reflection and refraction of a 
paraxial beam on a surface was limited to the first order terms of the necessary trigonometric 
functions. Seidel extended this to the third order and obtained five functions to describe the 
basic optical errors. These aberrations are given by (see also Figure I-7): 
 

• Spherical aberration: 4

4
1 ρ ; a difference in focal length depending on the radial 

distance ρ due to an incorrect change in the radius of curvature over the lens.   
• Coma: θρ cos3

0x ; third order tilt, gives rise to a ‘comet tail’ distortion of the focal 
point. 

• Astigmatism: θρ 222
0 cosx ; the radius of curvature changes in different angular 

directions  θ, resulting in two line shaped focal points.  

• Field curvature: 22
02

1 ρx ; describes a curvature of the focal plane (related to the 

astigmatism). 
• Distortion: θρ cos3

0x ; a difference in magnification of the image depending on the 
object size, resulting in a distorted picture. 

 
with (ρ,θ) polar coordinates in the pupil area and x0 the object height. Besides these 
aberrations there were also the lower order aberrations: 
 

• Piston: 1; constant term. 
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• Tilt: θρ cos ; flat slope that displaces the image. 
• Focus shift: 2ρ ; a longitudinal misalignment of the optical system and the image screen. 

 
Usually these polynomials are multiplied by a coefficient Wijk, where the ijk indices indicate 
the powers of x0, ρ and cos θ respectively. A wavefront description using Seidel aberrations is 
then given by: 
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Figure I-7: Seidels’ primary aberrations (taken from [43]) 

 

 
Figure I-8: the effect of primary aberrations on a Point Spread Function (taken from [43]) 
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Later Seidels’ work was extended by other authors to include 5th and higher order aberrations. 
The profound effect individual aberrations can have on image formation is shown in Figure 
I-8. As these aberrations are not linearly independent, they are not so useful for wavefront 
reconstruction purposes.  
 

b) Zernike series 
 
In the 1930’s Zernike was looking for an improved description of optical aberrations by 
means of polynomials, which he needed for the mathematical description of his ‘phase 
contrast’ technique44, 45. This technique allowed seeing a direct combination of the amplitude 
and phase of an image and meant a revolution in microscopy. For this innovation he was 
given the 1953 Nobel Prize in Physics.  
For a mathematical description of phase contrast in a microscope, detailed knowledge of the 
PSF of both the microscope and the aberrations introduced by the sample is necessary. For 
this purpose he proposed his ‘circle polynomials’ that are composed of a radial part Rn

m(ρ) 
and an angular part Θm(θ) defined by: 
 
 ( ) ( ) ( )θρθρ m

m
n

m
n RZ Θ=,                   (I-19) 

 
with n and m integers, n >│m│ and n - m even, where index n is called the order of the 
polynomial, m the meridional frequency. In reference [35] it is derived that the radial part is 
given by: 
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and the angular part by: 
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Usually a normalization factor Nn

m is multiplied with the polynomials. This Noll 
normalization has the value46: 
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Here δm0 is the Kronecker delta, with a value 1 if m = 0 and a value 0 otherwise. 
 
The main advantages of Zernike polynomials are that they are closely related to the Seidel 
aberrations (see Table I-3) and that they are orthogonal over the unit circle, so that47: 
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Table I-3: oversight of the Zernike polynomials up till the 5th order according to the 
OSA standards 
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Figure I-9: The first five orders of Zernike polynomials. 

 
and their mathematical form is preserved when a random rotation α is applied to the optical 
system. 
In order to regulate the many different indexing schemes for Zernike polynomials used in the 
literature (such as the Born & Wolf notation47, the Malacara notation48 and several other ones) 
an OSA taskforce has set a number of standards42. Not only does it state the correct forms for 
the Zernike indexes and normalizations, it also sets the convention to measure aberrations 
along the Line of Sight. The Zernike polynomials according to these standards are shown in 
Figure I-9. 
 
The Zernike theory for the calculation of point spread functions was later extended to obtain 
higher accuracies in the focal plane49, 50 and the regions near the focal plane51. 
 

c) Taylor series 
 
These polynomials are widely used for all kinds of applications. Their general form is:  
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In order to use these polynomials on a sampling grid within a circular pupil a Gramm-
Schmidt orthogonalization is needed. The resulting polynomials are reported in [15] and [52] 
and will not be discussed further here. 
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d)  Legendre series 
 
Products of Legendre polynomials Pl(x) can also be used. These are given by: 
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with  r  the floor function (rounds off the numerical argument downwards). Again these 
functions need to be orthogonalized by means of a Gramm-Schmidt procedure. A description 
of the use of these polynomials for wavefront sensing is given in [53]. 
 
 
I.4.5 Wavefront characterization parameters 
 
Besides the polynomial coefficients described above there are a number of other parameters 
that can be used for wavefront characterization. Here the most commonly used data 
representations are given, however currently a number of researchers are looking for other 
methods of data representation54, 55 which are not included. 
 
a) Root-Mean-Square (RMS) 
 
This is the square root of the averaged squared distance between the points on the aberrations 
surface and the average value of the aberration, or mathematically: 
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with ϕ  the average wavefront error and N the number of points (x,y) used in the calculation. 
In case an orthonormal polynomial series (e.g. Zernike) is used for the wavefront 
representation, formula (I-26) can be simplified to: 
 

 ∑=
k aaRMS 2                     (I-27) 

 
where ak  are the polynomial coefficients. This opens the possibility to calculate the RMS 
associated with specific types of aberrations. For Zernike polynomials with the single 
indexing scheme one can e.g. distinguish: 
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The advantage of using the RMS is that the flatness of a whole surface is characterized by one 
single number. A flat wavefront has an RMS = 0, an aberrated wavefront has an RMS > 0. 
However convenient, one must be careful using this parameter since it can be treacherous for 
specific types and combinations of aberrations56. 
One way to make the RMS slightly more sensitive to local aberrations is calculating it in 
specific zones, as is described further in this thesis (see III.3.4). 
 

b) Point Spread Function (PSF)  
 
The PSF can be considered as the image of a distant point source as seen through the system’s 
aberrated optics, which can be calculated using a Fourier transform: 
 
 ( ) ( ) ( ){ }2,2,',' yxieyxAyxPSF ϕπℑ=        (I-28)  
 
with A(x,y) and φ(x,y) the amplitude and the phase in the pupil plane and PSF(u,v) defined in 
the focal plane. Ideally the PSF is a single point, but usually it is smeared out according to the 
aberrations present. Convolving the image of an object with the PSF gives the aberrated 
image (see Figure I-10).02. 
 
 

c) Strehl ratio 
 
This is the normalized intensity of an aberrated PSF calculated by dividing the on-axis 
intensity of the PSF of the aberrated optical system by that of the same optical system without 
aberrations:  
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This concept, introduced by Strehl57, again characterizes the optical quality into one single 
number smaller than or equal to one.  
 

d) Optical Transfer Function (OTF) (see Figure I-10) 
 
This complex function, which describes the change in image contrast due to aberrations, is 
calculated by: 
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with  denoting the cross-correlation. Since formula (I-29) is complex two other quantities 
Modulation Transfer Function (MTF) and Phase Transfer Function (PTF) are defined:  
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Figure I-10: oversight of Fourier optics modalities used for wavefront characterization. 

 
The MTF describes the contrast with which a series of lines with sinusoidal intensity variation 
can be seen through the aberrated optics at various spatial frequencies. Usually it is 
represented as a logarithmic plot in function of the spatial frequency of a grid. The plotline is 
then the angular average.  
The PTF on the other hand is related to shifts and contrast reversals in the image.  
 
 

I.5 Aberrometer techniques  
 
This section is dedicated to giving an oversight of the large variety of aberrometers reported 
in the literature. Please note that in the following the laser light used has been rendered 
incoherent by optical means (neutral density filter, retinal reflection (see I.2.1),…) in order to 
avoid any influence by laser speckle. The beam splitters mentioned are highly transmissive in 
order not to loose too much of the faint light coming back from the eye. 
For other technical details on aberrometers we refer to Chapter II. 
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I.5.1 Subjective serial techniques 
 
This group contains the methods that measure each coordinate one by one and require that the 
subject gives active feedback in some way. These are also called ‘psychophysical methods’. 
 

a) Scheiner disc 
 
This was the first aberroscope known in literature, described in Scheiner’s book58 as follows: 
 

“Make a number of perforations with a small needle in a piece of pasteboard, not 
more distant from one another than the diameter of the pupil of the eye... if it is held 
close to one eye, while the other is shut, as many images of a distant object will be 
seen as there are holes in the pasteboard... at a certain distance, objects do not 
appear multiplied when they are viewed in this manner.”*  
 

This method, known as the Scheiner disc, is a very simple way to determine whether the eye 
is ametropic or not. Suppose a disc with two holes and a point source located at infinity on the 
optical axis of the eye (as shown in Figure I-11), then the incident light on the disc will be 
divided into two separate beams parallel to the optical axis. When these two beams enter the 
eye they will be individually refracted, resulting in two separate images on the retina. Only 
when the eye has no ametropia both beams will coincide to form one single image.  
In his famous paper8 Young used this method to measure the aberrations over various regions 
of the eye. But instead of holes he used slits in a dark plate and behind which he placed trial 
lenses to compensate for ocular ametropia until only one slit was seen by the subject. He did 
this for various separation distances between the slits.  
The Scheiner method is still used by amateur astronomers to estimate the optical quality of 
their telescope.  
 
 

 
Figure I-11: Scheiner disc, original design58 (1619) on the left and modern version on the 
right. 

                                                 
* Translation courtesy of David Williams (‘History of Ophthalmic Wavefront Sensing’, lecture at 4th Int. 
Congress on Wavefront Sensing and Aberration Free Refractive Correction, San Francisco, Feb 14-16, 2003 ) 
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Figure I-12: Smirnov aberrometer: original version14 (1961) on the left and modern version 
on the right. 
 
b) Smirnov aberrometer 
 
This idea was proposed by Ivanoff13 and later by Smirnov14. A subject is asked to look 
through a small hole towards a reference screen with a rectangular grid. This screen has a 
central hole with a movable crosshair that is put in alignment with the grid. Due to local 
aberrations in his eye the subject will see a misalignment between the crosshair and the 
reference grid. The measurement consists of moving the crosshair until the subject perceives 
it to be aligned again with the pattern on the screen. Next the entire device is moved to a new 
pupil position and the whole procedure was repeated.  
At the time the measurement took about 1-2 hours and the data processing could last up till 20 
hours. This caused Smirnov to remark that “the practicing ophthalmologist will find little use 
for such detailed measurement”, even though his device gave him valuable insights into the 
nature of optical aberrations. He was also the first to suggest that it should be possible to 
make customized contact lenses to compensate for the individual aberrations of the eye. 
 

c) Spatially resolved refractometer 
 
This aberrometer, developed by Webb and Penney59, resembles that of the ray tracing method.  
 

 
Figure I-13: Spatially resolved refractometer 
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During the measurement the subject is asked to look at a target image, while a light beam is 
projected into the eye at a specific sample position. Due to local aberrations the beam is 
deflected away from the focal point. By means of a joystick linked to an adjustable mirror the 
subject now has to realign the incident beam with the target image and from this correction 
the local wavefront tilt can be derived. The measurement takes a couple of minutes due to its 
serial and psychophysical character. 
 
 
I.5.2 Objective serial techniques 
 
This is the group of methods in which the aberrations in each pupil coordinate are measured 
one by one in an objective way. Only the Laser Ray Tracing technique can be classified in 
this group. 
 
Ray tracing is the closest to the basic Scheiner principle as it sends individual beams to 
various locations of the eye. This method, simultaneously developed by both the groups of 
Molebny60 and Navarro61, only requires a scanning system capable of delivering a narrow 
laser beam to specific pupil plane coordinates (Figure I-14). The retinal image of each 
incident beam is then determined by taking a picture using a linear array of photodetectors 
that are optically conjugated with the retina. Comparing the center of mass of the retinal spot 
with a predetermined reference position the focal shift can easily be determined. 
As the scanning system can be reprogrammed to scan the laser beam in different sampling 
patterns this method is very flexible62. In a recent study it was found that changing the 
sampling geometry can cause systematic errors in identifying specific combinations of 
Zernike modes63. Another advantage is that spot cross-over (which will be explained later) 
cannot occur. However, as this is a serial method, its measurement speed greatly depends on 
the speed of the scanner and the camera. 
Ray tracing has recently been incorporated into the Tracey Visual Function Analyzer, an 
aberrometer commercialized by Tracey technologies64. 
 

 
Figure I-14: scheme of the ray tracing method. 

 
I.5.3 Subjective parallel techniques 
 
This is the group of aberrometers that perform one parallel measurement over the entire pupil 
area at once, but that require active feedback from the patient.  
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Figure I-15: Tscherning original method (1894) using engraved lines on a magnifying glass.  
 
a) Subjective Tscherning method  
 
This method was proposed by Marius Tscherning at the end of the 19th century, he tried to 
map the aberrations other than defocus, cylinder and spherical aberration using a device he 
called ‘aberroskop’ (see Figure I-15). He described it as follows: 
 

“This [device] consists of a planoconvex lens of 4 Diopter, with a square micrometer 
grid engraved on the plane side. If an emmetropic eye, or an eye made emmetropic by 
means of trial lenses, looks trough this lens towards a distant light source it will see 
the shadow of the micrometer grid in the scattered light. But only eyes whose 
refraction is even throughout the whole pupil surface will perceive the grid as 
untwisted. To all eyes that do no answer this requirement the lines will appear 
bent,…”65 
 

The idea behind this aberroscope is that the planoconvex lens projects an image of the grid 
onto the retina, which while passing through the eye optics is twisted by the ocular aberrations 
(see Figure I-15, bottom). By studying these distortions it is possible to get a rough idea of the 
shape of the aberrations, mainly of the three ‘regular’ aberration patterns (defocus, 
astigmatism and spherical aberration). 
One practical problem of this method is that the grid image on the retina is very blurred, 
making it hard to estimate its shape. It is also a subjective method, since it requires the subject 
to observe the grid pattern himself and draw it afterwards on a paper.   
 
The first objection was remedied in 1977 by Howard and Bradford Howland15, who proposed 
to replace the planoconvex lens in Tscherning’s device by a cylindrical lens. This had the 
advantage that the grid lines were better focused on the retina, resulting sharper image 
patterns.  
 
 
I.5.4 Objective parallel techniques 
 
These aberrometers perform a large number of measurements over the whole pupil area at 
once by parallel sampling, without any feedback from the patient.  
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Figure I-16: modern objective Tscherning device using a plate with a number of apertures. 

 

a) Objective Tscherning method  
 
The problems resulting from the subjective nature of the original Tscherning method were 
also solved by Howland66, who introduced a fundus camera in his setup which could directly 
photograph the distorted grid pattern found on the retina. 
Recently another version of the technique has been proposed by Mierdel et al.67, 68, where the 
Tscherning grid was replaced by a plate with multiple perforations (see Figure I-16). The 
apertures in this screen serve to split the incoming collimated beam into a number of narrow 
beams. A spherical defocus lens placed right behind the screen projects the image of the 
screen onto the retina, which is recorded by a fundus camera. The distorted image can then be 
analyzed automatically to extract the focal shifts. This version of the objective Tscherning 
aberrometer is commercialized by WaveLight. 
 

b) Hartmann-Shack aberrometer*  
 
In the beginning of the 20th century Joseph Hartmann used Young’s version of the Scheiner 
disc for the quality testing of the optics in a spectrometer69. As his interests shifted towards 
the testing of telescope objectives, he proposed an improved version of this method, which 
consisted of a screen with a large number of openings70. He explained the method as follows:  
 

“In short the purpose of objective testing is to fully determine the dependency of the 
optical path on three parameters r, φ and λ. For this purpose a single beam (r,φ,λ) 
incident on the objective must be isolated and fixated in image space. The isolation of 

                                                 
* Ever since the principle of lenticular Hartmann screens was introduced for the measurement of ocular 
aberrations there has been a controversy about the politically correct name of this method. Short after its 
invention in 1971 by Shack and Platt for military and astronomical purposes it was dubbed ‘Shack’s modified 
Hartmann screen’, or ‘Shack - Hartmann’ for short (J. Ref Surg. 17, Sept/ Oct 2001, pp. S573-577). Later, in 
1994, when this technique was first used for the measurement of ocular aberrations by Liang and Bille, it was 
named ‘the Hartmann-Shack method’. This has given rise to lengthy discussions on this subject, but, as observed 
by Thibos (‘Principles of Hartmann-Shack aberrometry’, lecture at Wavefront Sensing Congress, Santa Fe, 
2000), this argument is rather futile since the basic idea was already long before introduced by Scheiner.  
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the beam is done by placing a screen with a small opening in location (r,φ) in front of 
the objective and sending monochromatic light with wavelength λ parallel to the 
optical axis through this opening. In order to locate the refracted beam in image 
space, one needs to determine its cross-section with two randomly chosen planes 
perpendicular to the optical axis;…”70  

 
Basically this means that a collimated beam coming from the objective under study is divided 
in a large number of beams by means of the apertures in the Hartmann screen (see Figure 
I-17, left). The beams passing through the holes will again have a certain tilt, which on a 
distant image screen is translated into a displacement of the image spots relative to the spots 
of a non aberrated wavefront. By correlating the displacement of each spot with its associated 
aperture in the Hartmann screen, one can estimate the gradient of the wavefront as explained 
before in I.4.2a).  
This modification of Scheiner’s method had the advantage that all measurements could be 
done at once for the whole entry pupil of the optical setup. But its main disadvantage is that 
the sizes of the individual Hartmann spots are quite large, making it difficult to accurately 
locate the spot centers.  
 
Roughly 70 years later Roland Shack and Ben Platt proposed to replace the Hartmann screen 
with an array of lenses71. In this setup each lens serves the same purpose as the individual 
holes from the Hartmann screen, but with the distinct advantage that the light passing through 
each subaperture is focused on the image screen. This results in much smaller spots compared 
to the original Hartmann screens, which benefits the resolution of the (δu(x,y), δv(x,y)) 
measurements. Another advantage is that the entire pupil area can be used for measurement, 
there where the apertures in the original Hartmann screens had to have certain spacing 
between them for proper working.  
The Hartmann-Shack technique also has a limitation in the form of the ‘cross-over’ effect, 
which occurs in regions with steep wavefronts. If a local wavefront slope is steeper than a 
certain threshold value, its associated spot in the lenslet focal plane will be displaced into an 
area associated with the spot of a neighboring lenslet. This makes it impossible to correlate 
the spot with the aperture projecting it, rendering the measurement useless for automatic 
processing. 

 
Figure I-17: the Hartmann-Shack method: original version70 (1904) of the Hartmann screen 
on the left and modern lenticular version as proposed by Liang et al. on the right. 
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The cross-over effect depends both on the size of the individual lenslets and the amplitude of 
the wavefront being measured, both of which can be optimized. For the lenslet size an 
equilibrium must be found between a large aperture size on the one hand (desirable since it 
receives more light and gives smaller focal spots) and a smaller aperture on the other hand 
(provides higher sampling resolutions). The wavefront amplitude is optimized by partial 
compensation using trial lenses or spatial light modulators72, 73, 74. Usually the remainder of 
the aberrations is well within the active range of the Hartmann-Shack sensor. 
 
The first application of this technique on human eyes was in 1992 by Liang and Bille75. Since 
then it has become the most popular wavefront sensing technique to date, used in over 15 
different commercial sensors (for an incomplete oversight see Table I-4). The classic 
Hartmann screens are still in use today, mainly for the testing of telescope mirrors. 
 

Table I-4: (incomplete) list of commercially available Hartmann-Shack aberrometers  

Company Commercial name aberrometer 
Alcon (Summit/ Autonomous) LadarVision 
Bausch & Lomb Zywave 
Brookfield Optical Systems ABRA 2010 
Schwind* ORK 
Topcon KR 9000 PW 
VISX  /  20/10 Perfect Vision WaveScan 
WaveFront Sciences COAS 
Zeiss/ Meditec* WASCA 

 
 
I.5.5 Other techniques 
 
Several other methods have been reported whose principles do not fit the above categories. 
These will be listed here. 

a) Direct calculation using PSF 
 
This method calculates the wavefront aberrations from the PSF taken over the entire pupil 
area. However, as said before in I.4.1, this is hard to measure directly since any external 
image taken from the PSF passes through the aberrated optics again and results in the 
autocorrelation of the PSF.  
The technique was first proposed for the use in eyes by Artal et al.76,77, who at first assumed 
that the retinal image was the autoconvolution of the PSF. Using a Gerchberg-Saxton (GS) 
algorithm78 he derived the wavefront aberrations with knowledge of the ocular PSF and the 
pupil (see Figure I-18). In order to make sure that the iterative process in the GS-algorithm 
would converge he had to make an initial estimation of the wavefront first.  
When Artal later reported27 that his assumption about the retinal PSF was incorrect (the image 
on the camera was the autocorrelation of the PSF instead of autoconvolution), the technique 
was modified79, 80. In the new version the PSF was calculated from two retinal images, each 
recorded at a different pupil size. Once a reliable estimate for the PSF was available, it could 
be used for the calculation of the wavefront aberrations. 
The biggest disadvantage of this method is the large calculation times required. 
                                                 
* Licensed by WaveFront Sciences 
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Figure I-18: the Gerchberg-Saxton algorithm used by Artal (figure taken from [77]).  

 
 
b) Foucault knife-edge aberrometer 
 
The knife-edge principle was presented by Leon Foucault81, 82 in 1857 and was first used in an 
aberrometer in 1969 by Berny and Slansky83. In this aberrometer monochromatic light is sent 
through a slit shaped opening, which is projected on the retina as a secondary source (Figure 
I-19). The analysis of the outgoing wavefront is done by means of a lens and a flat metal plate 
(‘knife-edge’) that blocks part of the light near the lens’ focal plane. Next a second lens 
projects the resulting image of the pupil plane on the CCD camera. Due to the knife-edge a 
number of shadows appear that can be directly attributed to ocular wavefronts aberrations.  
In the knife-edge plane the image of the retinal source is distorted by focal shifts (u, v) of 
individual rays passing through pupil plane points (x,y). The size of these shifts can be 
determined by dividing the image I containing the Foucault shadows by an image I0 recorded 
without the knife-edge. This way the u-component, perpendicular to the knife-edge, can be 
estimated by: 
 

 
Figure I-19: Foucault knife-edge test, applied to the human eye (1969). 
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with u0 an off-set value for the normalization of the non-aberrated case and 2a the geometrical 
width of the slit behind the source. The v-component is obtained by rotating the knife-edge 
over 90º and repeating the measurement. This gives us a pupil image and wavefront gradient 
values in both the u- and the v-direction for each pixel of the image, which can be integrated 
by a method described in I.4.2. 
Formula (I-31) is an approximation that is only valid if the slit image is not completely 
covered or uncovered by the edge. Although this is clearly a double-pass method, one may 
assume that only about 2% of the variance in the final wavefront calculation can be attributed 
to the first pass84.  
To our knowledge this method has not been developed any further for wavefront sensing. 
 
 
c) Automatic retinoscope 
 
The automatic retinoscope is an automated version of the hand-held retinoscope that 
ophthalmologists use in everyday clinical practice.  
 
The hand-held device uses a slit of white light that is scanned over the pupil area, part of 
which goes through the pupil opening and reflects on the retina. This reflection can behave in 
three ways: 
 

• The reflection is shaped like a slit and moves in the same direction as the incident 
scanning slit of light, indicating an ocular ametropia higher then -1.5D along the 
scanned line (i.e. low myopic or hyperopic).  

• The reflection is shaped like a slit and moves in the opposite direction of the incident 
light, indicating an ametropia of lower then -1.5D along the scanned line (i.e. 
myopic). 

• The reflection fills the entire pupil opening, a situation called the neutral point. 
 
 

 
Figure I-20: Automatic retinoscope 
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The difference in relative scanning speed between the incident and the reflected light is 
directly proportional to the difference between the refraction along the scanned meridian and  
-1.5D. In a clinical examination a number of meridians in the pupil area are tested this way, 
where for each meridian trial lenses are placed in front of the eye until the neutral point is 
found. By mapping the refraction along a number of these meridians it is possible to get a 
general idea of the ocular refraction. 
 
In the automated retinoscope85,86 (see Figure I-20) a slit of monochromatic light is scanned 
along a large number of meridians. The direction and speed of the reflected light are measured 
by a sensor array. Using these parameters a refractive map of the entire eye can be 
calculated*, which can be translated to a wavefront map and Zernike polynomials coefficients. 
 
 
d) Confocal method 
 
The confocal Scanning Laser Ophthalmoscope (SLO) can also be used to get an idea of the 
local refractive zones of an eye using a principle similar to Laser Ray Tracing (see I.5.2).  
This device is originally intended to produce live video images from the posterior segment of 
the eye. For this purpose it uses a scanning system to sweep a laser beam over the retina 
(Figure I-21). After reflection on the retina the light goes back through the scanning unit to 
compensate for the sweeping movement, after which a lens focuses this light through a 
pinhole diaphragm on an avalanche photo diode (APD). Only when the retinal reflection is 
within the virtual image of the pinhole, the reflected light can reach the APD and contribute to 
the imaging process. If this is not the case a dark ‘shadow’ emerges on that location. A more 
detailed description of the working principles of the SLO can be found in [87]. 
 
Comparing the basic setup of the SLO in Figure I-21 and the LRT in Figure I-14, two big 
differences can be found: 
 

• Location and function of the scanning unit:   
In the LRT this is usually an opto-acoustic device or a mirror system used to move 
the laser beam parallel to the optical axis and send the laser beam through a well-
known location of the eye optics. The scanning unit inside the SLO on the other 
hand contains a polygon and a galvanometer mirror to sweep the laser beam over the 
retina and obtain a live retinal video sequence (Figure I-21). To compensate for the 
continuous sweeping movement of the reflection it needs to be descanned before it 
can be sent to the pinhole. 

• Presence of the confocal pinhole in the SLO, optically conjugated to the retina: This 
reduces the depth of focus and specular reflections from the eye optics, which 
consequently increases the contrast of the images. In addition it is useful for 
estimating height differences within the retinal image. For the LRT the use of a 
confocal pinhole would only limit the maximum size of focal shifts that can be 
registered. 

 
Usually very clear retinal images can be obtained using the SLO. However in some patients 
with irregular local wavefront aberrations these overlaying shadowlike patterns are found, 
roughly located in the areas with the strongest aberrations. This is due to focal shift on the 

                                                 
* In order to work properly the sensor array not only measures along the meridians, but also in several points 
above and below the meridian. Otherwise only radially and point symmetric aberrations (with respect to the 
pupil center) can be determined with this method. Further information can be found in reference [85]. 
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retina, where the laser spot leaves the virtual image of the confocal pinhole. Since only light 
that reflects within this virtual image can be detected by the APD the local intensity in the 
retinal image is reduced. This intensity reduction, called vignetting, is usually a nuisance that 
frustrates the realization of clear retinal images.  
 
In recent technical reports88, 89 it was stated that, even though their full nature has not yet been 
determined, SLO vignetting patterns could be used as an indication of the local wave-front 
aberrations of heavily aberrated eyes. It was also noted that shadow patterns were dependent 
on the amount of prefocus introduced by the SLO, confirming the refractive origin of these 
shadows. 
In practice a good overview of the shadow patterns in the pupil area can be obtained by 
placing the focal point of the SLO just in front of the corneal apex. This situation is called the 
‘Maxwellian view’90, in which for non-aberrated eyes the scanning beams inside the eye 
remain parallel to the optical axis. Hence the magnifications of the retina image and the 
observed shadow patterns are the same, so the relative size of the vignetting shadows can 
easily be estimated. 
 
 

 
Figure I-21: scanning laser ophthalmoscope 
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PART I 
 
 

Clinical comparison of 6 aberrometers 
 
 
 
 
 
 
 
 
 
 
 
 

Recent years have seen a boom in the number of commercial 
wavefront sensing devices on the market. Each of these aberrometers is 
based on a different technique with different methods for analyzing the 
raw data and with different ways of interpreting the results. One can ask 
whether all these embodiments will provide the same results when tested 
on a fixed group of test eyes… The first part of this thesis tries to answer 
this important question. 
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II.1 Abstract  
 
Purpose: To provide a detailed assessment of the techniques, technical features and practical 

use of 6 aberrometers made available to our institution in the period of September 2002 to 
January 2004. 

Setting: Department of Ophthalmology, University Hospital Antwerp, Antwerp, Belgium 
Materials: A number of technical and practical parameters will be listed for the Visual 

Function Analyzer (Tracey), the OPD-scan (ARK 10000), the Zywave, the WASCA, the 
MultiSpot Hartmann-Shack device and the Allegretto Wave Analyzer. These parameters 
include details on the working principles, the data acquisition, the aberrometer alignment, 
the wavefront calculation and the data analysis. Also operator and patient comfort as well 
as practical advantages and disadvantages are discussed. 

Conclusion: Because measuring aberrations in clinical practice is relatively new, most devices 
are still in progress and will implement new applications and improvements according to 
the clinicians’ needs. However, all devices meet at least half of the following parameters: 
alignment, correction for source wavelength, data averaging, measurement quality check 
and inhibition of accommodation. 

 
II.2 Introduction 
 
Since aberrometry presents larger applications than enhancing the quality of the ablation zone 
in an excimer laser treatment, the choice of the most appropriate machine will mainly depend 
on the ophthalmologists’ practice style. Making a practical comparison between the different 
devices available on the market is not an easy task because of the variety in principles used, 
e.g. ray tracing60,61, Hartmann-Shack75,91, Tscherning68 and automatic retinoscopy85,86. 
To our knowledge only two publications attempted to make a comparative list92,93 of 
characteristics, but both of them relied on unedited information directly provided by the 
manufacturers and the tables presented were far from complete. Additionally each of the 
manufacturers used his own terminology which might be confusing to non-specialists. 
The purpose of this paper is to provide a number of technical and practical parameters that 
can be useful in choosing an aberrometer for daily clinical practice. The main focus will be on 
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the wavefront measurements themselves, rather than on their possible application in refractive 
surgery.  
The aberrometers under study are:  
 

• Visual Function Analyzer (VFA; Tracey): based on ray tracing; can be combined with 
EyeSys Vista corneal topographer. 

• OPD-scan (ARK 10000; Nidek): based on automatic retinoscopy. Provides integrated 
corneal topography and wavefront measurement in one device. 

• Zywave (Baush & Lomb): a Hartmann-Shack system that can be combined with the 
Orbscan corneal topography system. 

• WASCA (Zeiss/ Meditec): a high resolution Hartmann-Shack system. 
• MultiSpot 250-AD Hartmann-Shack sensor94: a custom made Hartmann-Shack 

system, engineered by the Laboratory of Adaptive Optics at the Moscow State 
University, that includes an adaptive mirror to compensate for accommodation.  

• Allegretto Wave Analyzer (WaveLight): an objective Tscherning device. 
 
This study was conducted in the period between October 2002 and January 2004. Within this 
period the companies of the above aberrometers were kind enough to make their devices 
available to our institution.  
We would like to highlight that the following results represent only the devices as they were 
made available to our department in the study period mentioned above. Since the devices are 
subjected to constant changes and improvements we advise potential users to carefully verify 
all parameters for each model and each device. 
 
 
II.2 Materials and methods 
 
The different technical and practical parameters of the devices studied in this comparison are 
shown in Table II-1. The importance of each of these parameters will now be discussed. 
 
 

II.2.1 Principles used to measure the aberrations 
 
The aberrometers listed above comprise four different techniques which are all based on the 
principle of focal shift. This principle states that a perfect lens always refracts any incident 
light beam parallel to the lens’ optical axis through its focal point (see Figure II-1, top). 
However in case the lens is aberrated this is no longer true for each parallel incident beam. 
Instead some of the beams are focused in front of or behind the focal point, so the cross-
section point of the refracted beam with the focal plane appears to have shifted from the focal 
point. This is called ‘focal shift’ and can be used as a definition of what is measured by an 
aberrometer. 
When the incident beam is moved to another spot on the lens surface the focal shift will vary 
in accordance with the lens’ local aberrations in that spot. Mapping the relation between the 
different points of incidence and the corresponding focal shifts then provides a general idea of 
the wavefront slopes in those positions. Using a statistical least-squares fit procedure and (the 
mathematical derivatives of) Zernike polynomials an estimate to the ocular wavefront can be 
found. 
 
Starting from this common basic principle aberrometers can further be categorized according 
to their respective technical properties. One possible classification can be based on subjective 
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(psychophysical) and objective devices. The first category requires the patient to give some 
feedback during the measurement process; objective devices perform the entire measurement 
autonomously. In general objective devices perform measurements faster than subjective 
devices. Subjective devices also rely completely on the patient’s ability to communicate with 
the examiner, making these methods less interesting for the testing of children or disabled 
patients. 
Another subdivision can be based on the serial or parallel principles used in the different 
machines, respectively referring to a one-by-one measurement of the data points or an 
instantaneous collective measurement of all points. Parallel methods can be very fast, whereas 
serial methods require a longer measurement time. Serial methods on the other hand cannot 
suffer from the cross-over effect (see further) which might hamper parallel measurements.  
A third classification can be based on the single or double-pass principles, indicating the 
number of times the measurement beam has to pass the aberrated eye optics. Since the light is 
aberrated at each passage it is important to keep the number of passages as low as possible, 
preferably to one. However objective measurements cannot be performed in a single-pass 
way, creating the necessity to reduce the negative effects of double-pass using a number of 
optical tricks. Subjective methods on the other hand can easily be made single-pass. 
Finally a last classification can be based on forward projection of the measurements (i.e. the 
focal shifts are projected on the retina) or backward projection (i.e. the focal shifts are 
projected directly on the camera). A backward projection requires a source on the retina, such 
as a reflection of a narrow laser beam. As this narrow laser beam remains relatively 
unaffected by the first pass, this can be considered a good approximation of single-pass.  
 
In this work we have chosen to use the serial-parallel classification: two serial and two 
parallel methods will further be discussed in this order. Only the most important aberrometer 
components will be discussed to illustrate the working principles. Components such as the 
computer for data processing or prefocus lenses for refraction compensation are not included, 
even though they are required for proper functioning of the devices. 
 
 
a) The ray tracing principle (Figure II-1, center left) 
 
This is a serial, double-pass method using forward projection, which can be implemented in 
both an objective60,61 and subjective way65. This technique is the best possible approximation 
of the basic focal shift principle described above.  
Ray tracing uses a narrow laser beam that is directed into the eye parallel to the eye’s line of 
sight by means of a xy-scanner. Once in the eye the local aberrations in the beam’s entry 
position cause a focal shift of the retinal image with respect to a certain reference position. 
Using a beam splitter and lens L2 the retinal image is captured on a linear array of 
photodetectors and is available for further processing. The xy-scanner, comprising two 
separate scanners for the x- and y-directions, moves the beam repeatedly to a new entry 
position until homogeneously spread measurements are available for the whole pupil area.  
Ray tracing is a rather simple, highly flexible technique. In principle the xy-scanner could be 
programmed to include other scan geometries than the standard rectilinear or polar scan grids. 
Its uncomplicated nature also makes it very robust for extreme aberrations.  
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Figure II-1: The principles of the wavefront sensors. (Top) focal shift principle; (Center left) 
ray tracing; (Center right) Hartmann-Shack; (Bottom left) Automatic retinoscope; (Bottom 
right) Tscherning. Single sided arrows indicate direction of movement for beams. 
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b) The principle of the automatic retinoscope85, 86 (Figure II-1, bottom left) 
 

This is an automated version of the handheld retinoscope, implemented in an objective, serial, 
and double-pass way. It uses focal shift in a different way (see inset), starting from the 
observation that the retinal image of a light beam coming from a superior direction is located 
below the optical axis in a myopic eye and above the optical axis in a hyperopic eye. Since 
the retina can be considered as a spherically concave mirror (reflecting about 4% of the 
incident light), the beam is reflected back in more or less the original direction in a myopic 
eye. In a hyperopic eye however the reflection is directed to the opposite side of the pupil. 
Moving the incident beam along a certain pupilairy meridian (indicated by arrows in figure) 
will result in a reflected beam that goes respectively in the same or the opposite direction as 
the incident beam. The difference in direction and the ratio between the speed of the incident 
beam and that of its reflection can now be used to estimate the ocular refraction along this 
meridian.  
The automatic retinoscope uses a LED source that is placed behind a screen with a fast 
moving slit. Using lens L1 the image of the slit is projected on the pupil plane, where a portion 
of the light will pass the pupil opening. Depending on the ocular refraction along the scanned 
meridian the reflected beam moves with a specific speed and direction. This is registered by 
projecting the pupil plane on an array of photosensitive diodes using a beam splitter and lens 
L2. When the orientation of both the scanning slit and the diode array are changed to measure 
another meridian, an ametropia map (in dioptres) is obtained that can be transposed into a 
wavefront map (in µm). 
 
 
c) The Hartmann-Shack principle75, 91 (Figure II-1, center right) 

 
This is an objective, parallel, double-pass method using backward projection. A Hartmann-
Shack device uses a narrow laser beam that is sent along the ocular line of sight into the eye 
where it reflects on the retina. This reflection serves as secondary source that illuminates the 
pupil area from behind. The outgoing light is then guided through a set of relay lenses that 
projects the pupil plane onto an array of tiny lenses that splits up the wavefront into a number 
of individually focused spots on a CCD camera. Due to focal shift the resulting spot pattern 
(see inset) shows spot displacements compared to the reference positions. This way the 
wavefront slopes are determined for the entire pupil at once.  
However fast and uncomplicated (as no moving parts are required), the performance of this 
parallel method is limited to aberrations that are not too complicated. In order to determine 
the focal shift directly, each reference position is allocated a neighborhood in which the 
shifted spots are directly associated with a specific reference position (square grid in figure 
inset). For rapidly varying wavefronts with steep slopes this can sometimes result in focal 
shifts becoming so large that spots cross over to neighborhoods belonging to another 
reference positions (see bottom of inset). This makes it impossible to determine the focal shift 
in those areas. Cross-over can be partially prevented by using prefocus lenses that correct the 
ocular refraction.  
 
 
d) The Tscherning principle (Figure II-1, bottom right)  

 
This is a parallel, double-pass method using forward projection, which can be implemented in 
both an objective68 and subjective way65. Contrary to the Hartmann-Shack the Tscherning 
aberrometer uses not one, but a group of laser beams that enter the eye. These beams are 
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generated using a wide laser beam passing through a screen with a large number of round 
holes. Lens L1 projects an image of the Tscherning screen onto the retina, resulting in a spot 
pattern resembling a Hartmann-Shack pattern, where again spots are displaced due to focal 
shift. The retinal image is then retrieved using a beam splitter and lens L2. The distortions in 
the retinal spot pattern are then used to obtain the wavefront as before. 
The Tscherning method may also suffer from the cross-over effect, as is the case with the 
Hartmann-Shack method. Similar countermeasures are implemented to prevent cross-over.  
 
 
II.2.2 Measurement details 
 
• Wavelength: color of the light used for measurements. 
• Compensation of chromatic aberrations: calculated compensation of the chromatic defocus 

using a numeric model. 
• Maximum number of samples: in general it can be said that the more samples taken within 

the pupil area, the more accurate the measurement will be. However, since the data 
processing following the measurement plays an equally important role, a large number of 
samples does not necessarily mean a more reliable measurement. 

• Sample grid geometry: geometry of the sample grid in the pupil plane. 
• User defined grid size: the possibility of grid size modification by the user. 
• Measurement speed: time required for one measurement 
• Maximum measurable pupil size:  largest pupil size that can be measured. 
• Dioptric range of prefocus: range within which the patients’ refractive error can be 

compensated by the internal lenses of the aberrometer. 
• Check for quality of measurement: in order to estimate the reliability of a measurement, 

either automatically by the computer or afterwards by the user. 
• Automatic averaging of measurements: preprocessing of the data by averaging.  
• Possibility of automatic measurement: indicates whether the aberrometer can perform a 

measurement by itself after optimal alignment has been achieved. 
• Inhibition of accommodation: wavefronts change drastically with accommodation of the 

crystalline lens. Therefore it is necessary to eliminate accommodation using optical tricks. 
One commonly used method is putting the target at optical infinity. Another method, 
called “fogging”, is to make the target out of focus so that accommodation will not help to 
get a sharp image. Another approach is the use of adaptive optics. 

• Speckle reduction: coherent laser light often forms granular dots in the images due to small 
local interferences that complicate the determination of the spot centers. This can be 
avoided by breaking the light’s coherence, by averaging or by using special filters (either 
in the hardware or software of the device).  
 

 
II.2.3 Alignment 
 
• Measurement axis: the axis along which a measurement is taken. This can be done along the 

Line of Sight (LoS), which is the line connecting the fovea, the pupil center and the 
fixation target or along the visual axis (connecting the fovea, the eye’s nodal points and 
the fixation target). Even though both axes differ only slightly from each other, the 
difference in wavefront can be considerable. The OSA standard95 advises to use the LoS 
as it is physiologically the most important axis. Conversions between both axes are 
possible, but not advisable as it would introduce a number of errors into the calculations. 
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Table II-1: Technical comparison of the aberrometers under study*, **, *** 

 VFA OPD-scan Zywave WASCA MultiSpot Allegretto 

Device details       
Device type or serial 
number 

2066-1 ARK 10000 Zywave II 
(2.0.1) 

Not available I-a 1071 

Software version 1.00 1.11a 4.45 SP1 1.41.6 1.5 4.10 
Method Ray Tracing 

 
Automatic 
retinoscope 

Hartmann-Shack Hartmann-Shack Hartmann-Shack Objective 
Tscherning 

Measurement 
details 

      

Wavelength (nm) a 650 808 785 850 780 660 
Chromatic correction b No Yes Yes Yes (555 nm) No Yes (546 nm) 
Maximum number of 
samples a 

256 1440 80 1452 180 168 

Sample grid geometry a, c polar by meridian rectilinear rectilinear rectilinear rectilinear 
User defined grid size a, c Yes No No No No No 
Measurement speed a < 50 ms < 0.4 s < 1s 13 ms < 30ms 40 ms 

Max. measurable pupil  
size b, c 

8 mm 6 mm 8.5 mm 9 mm 8 mm 8 mm 

Dioptric range  
prefocus a,  c 

Sph: 
-15→ +15D 

Sph: -20 → 22D 
Cyl: 0 →± 12D 

Sph: -14 → 8D 
Cyl: 0 → ±5D 

Sph: -15 → 7D 
Cyl: 0 → ±5D 

Sph: -15 → 10D 
Cyl: 0 →± 6D 

Sph: -12 → 6D 
Cyl: 0 → ±4D 

Automatic check  of 
measurement quality a, c 

Number of 
rejected spots 

Yes “Repeatability 
criteria” 

No Comparison tilts 
with HS spots 

Comparison tilts 
with spots 

Automatic averaging of 
measurements a, b 

No 3 measurements Best 3 out of 5 No User defined User defined 

Inhibition of 
accommodation b 

Fogging 
 

Fogging Fogging Object at 
infinity 

Object at 
infinity / 

adaptive mirror 

Fogging (user 
defined) 

Possibility of automatic 
measurement a, c 

Yes No No No No Yes 

Speckle reduction b low-pass filter  Does not apply Averaging Pinhole “wobbling 
mirror” 

averaging/ low-
pass filter 

Alignment       

Measurement axis b Line of Sight Visual axis Line of sight Line of sight Line of sight Line of sight 
Patient target a, c Red cross 

 
Balloon on 

horizon 
Mountain and 

road 
Spider web Small circle Star in yellow 

circle 
Alignment procedure for 
operator a, c 

Variable line 
pointing to 
pupil center 

Dots  parallel to 
pupil 

Circle parallel to 
pupil 

Pupil inside 
crosshair / 

offset values 

2 circles and 
half cross / 

calculated pupil 

Purkinje 
reflexes and 
pupil centre 

Calculation details       

Number of Zernike 
polynomials used a, c 

27 
(6th order) 

27 
(6th order) 

20 
(5th order) 

Up till 65 
(10th order) 

Up till 27 
(6th order) 

Up till 27 
(6th order) 

Pupil size for Zernike 
polynomials a, c 

Automatic/ 
User defined 

6 mm 
 

Pupil size Automatic/ 
User defined 

Automatic/ 
User defined 

Automatic/ 
User defined 

Report axis a, b Line of sight Line of sight Line of sight Line of sight Line of sight Line of sight 
Consistent with OSA 
Zernike notation? c 

Yes No (not 
normalized) 

Not yet (Born & 
Wolf notation) 

No (inverted 
sign) 

Yes Yes (+ own 
notation) 

Possibility of aberration 
film sequence a, c 

No No No 2 frame/ sec Video rate No 

 

* This data is subjected to constant change and represents only the devices made available by the companies to 
our institution in the period September 2002 – January 2004. 

** Some of the data in this table was previously published92, 93.  
***Sources: a Aberrometer manual; b Company delegate; c Observation by the authors 
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Table II-1(continued): Technical comparison of the aberrometers under study*, **, *** 
 

 VFA OPD-scan Zywave WASCA MultiSpot Allegretto 

Data Analysis        
Raw data a, c Yes No Yes (mesh) Yes Yes Yes 
Refraction a, c Yes Yes Yes Yes Yes Yes 
Wavefront a, c Yes Yes Yes Yes Yes Yes 
Higher order wavefront  
a, c 

Yes Yes Yes Yes Yes Yes 

RMS a, c Yes Yes Yes Yes Yes Yes 
3D wavefront a, c No No Yes Yes Yes Yes 
Total refraction map a, c Yes Yes No No Yes Yes 
PSF a, c Yes No Yes Yes (real data) Yes Yes 
MTF a, c No No No No No No 
Visual acuity a, c Yes No No Yes Yes No 
Error estimate map a, c Yes No No No Yes Yes 
Irradiance map a, c No No No Yes No No 
Zernike coefficient 
values (on screen) a, c 

Yes Yes Yes Yes Yes Yes 

Change of refraction 
with pupil size a, c 

Yes  (3, 4.5, 6 
mm zones) 

Yes (3, 5, 7 
mm zones) 

Yes (3mm – 
Pupil size) 

Yes (user 
defined) 

No Yes (user 
defined) 

Miscellaneous       
Data export of Zernike 
coefficients a, c 

Yes Yes Yes Yes Yes Yes 

Data export of wavefront 
maps a, c 

Yes Yes No No Yes Yes 

Customized printout a, c Yes Yes Yes Yes Yes Yes 
Calibration check a, c Test eye Test eye 2 test eyes Test eye Test eye Test eye 
Requirement for dilation 
a, b 

Small pupils Small pupils Small pupils Small pupils Small pupils Small pupils 

 
* This data is subjected to constant change and represents only the devices made available by the companies to 

our institution in the period September 2002 – January 2004. 
** Some of the data in this table was previously published92, 93.  
***Sources: a Aberrometer manual; b Company delegate; c Observation by the authors 
 
 
• Patient target:  depiction of the fixation target to minimize patient’s eye movement.  
• Alignment procedure for operator: in order to make sure the aberrometer optics are well 

aligned with the LoS it is imperative that a good alignment procedure is in place. This can 
be done by using the landmarks of the patient’s physiology or by creating reflections that 
can serve as artificial landmarks. 
 

 

II.2.4 Calculation details    
 
The time needed to complete the data processing is a very important parameter. However, 
since this parameter varies strongly with the type of computer used, it was not included in this 
study. 
Most of the following calculation parameters have little clinical interest and are only useful 
when reporting numerical Zernike data. 
 
• Number of Zernike polynomials used: this parameter indicates the spatial resolution of the 

wavefront image. The more Zernike polynomials used the higher the spatial resolution.  
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• Pupil size for Zernike polynomials: Zernike polynomials are mathematical functions defined 
on a unit circle. When expressing wavefront aberrations in terms of Zernike coefficients it 
is imperative that this goes accompanied by the pupil diameter over which the aberrations 
were determined. These coefficients will change when the measurement is repeated for 
another pupil size, and may cause problems if data from different pupil sizes is compared. 
However calculations have been described96 allowing to derive the Zernike coefficients of 
a smaller pupil size starting from a larger one.  

• Report axis: the axis used to report the Zernike polynomials. According to the OSA 
standards for reference axes95 this should be the LoS. 

• Consistent with OSA Zernike notation: the sign and normalization convention used to report 
the Zernike coefficients were determined by the OSA standards42, although a number of 
other conventions are currently still in use. 

• Possibility of making aberration film sequence: some devices offer the possibility to 
perform a series of measurements allowing an animated reconstruction of the data. 

 
 

II.2.5 Data Analysis 
 
A list of all the data displays available: 
 
• Raw data: provides an image of the original spot diagram.  
• Refraction: sphere, cylinder and axis  
• Wavefront: total wavefront aberrations. 
• Higher order wavefront: the remaining wavefront aberrations after correction of the sphere 

and cylinder. 
• RMS: Root-Mean-Square, a parameter defined by RMS = ∑i iZ 2  (sum is taken over all 

Zernike coefficients Zi), providing a measure for wavefront flatness. As this formula can 
be easily modified by only including selected Zernike coefficients many different types of 
RMS can be defined, such as: total RMS (all coefficients, except the tilts), higher order 
RMS (all coefficients from radial orders higher than 2) and nth order RMS (all 
coefficients belonging to the nth radial order). 

• 3D wavefront: a 3D display of the wavefront. This can be a useful tool for estimating the 
shape of the measured wavefront. 

• Total refraction map: refraction map of the whole eye optics calculated from the wavefront. 
• PSF: the Point Spread Function, the image of a point source as seen by the patient 

calculated from the wavefront.  
• MTF: the Modulation Transfer Function indicates the contrast with which lines of specific 

spatial frequencies can be perceived by the patient. 
• Visual acuity: a simulation of the Snell “E” as seen by the patient calculated from the 

measured wavefront. 
• Error estimate map: a regional map of the difference between the measured data and the 

data simulated using the Zernike polynomial fit. This may be useful as a quality control. 
• Irradiance map: image of the pupil area in which the amount of light passing through each 

section of the pupil is indicated. This can be used for mapping opacities in the eye optics. 
• Zernike coefficient values (on screen): the numeric values of the Zernike polynomial 

coefficients shown on screen. 
• Change of refraction with pupil size: a graph or table where the refraction is set in function 

of the pupil size.  
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II.2.6 Miscellaneous 
 
A number of properties that could not be included under the previous categories: 
 
• Data export of Zernike coefficients: the possibility to export the numeric values of the 

Zernike coefficients in a file. 
• Data export of wavefront maps: the possibility to export the wavefront image (or another 

illustration) in a file. 
• Customized printout: the possibility to modify the printout according to the examiner’s 

needs.  
• Calibration check: method for calibration  
• Requirement for dilation: to precise whether dilation of the pupil in recommended before 

measuring. 
 
 
II.3 Results 

 
The values of the above parameters for each aberrometer are shown in table 1. Note that this 
data is subjected to constant change and represents only the devices made available by the 
companies or their Belgian delegates to our institution in the period of September 2002 to 
January 2004.  
 
 
II.3.1 Principles used to measure the aberrations 
 
The VFA uses ray tracing, while the OPD-scan uses automatic retinoscopy. Three devices use 
the Hartmann-Shack principle (Zywave, WASCA and MultiSpot) and the Tscherning 
principle is used by the Allegretto. 
 
 
II.3.2 Measurement details 
 
• Wavelength: in each device a monochromatic LED or laser source is used that emits red or 

infrared light (ranging from 650 nm for the VFA till 850 nm for the WASCA). At these 
wavelengths the measured aberrations will be slightly different from the most relevant 
aberrations in the middle of the visual spectrum97. Especially the sphere can differ up till 
0.7D between infrared and green wavelengths98.  

• Compensation chromatic aberrations: all aberrometers have this feature, except the 
MultiSpot and the VFA. However both devices will include this feature in the next 
software release. 

• Maximum number of samples: this parameter ranges from 80 (Zywave) up till 1452 
(WASCA).  

• Sample grid geometry: all devices use a rectilinear sample grid. The VFA on the other hand 
scans over a polar (concentric) grid and the OPD-scan measures over a series of 
meridians. 

• User defined grid size: only the VFA has this feature, which can generate grid sizes going 
from 2mm up till 8mm. 
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• Measurement speed: the WASCA does its measurements in 0.013s. The other devices need 
about 0.03 to 0.5s. 

• Maximum measurable pupil size:  the parameter ranged from 6mm (OPD-scan) up till 9mm 
(WASCA). 

• Dioptric range of prefocus: the dioptric ranges of the devices are comparable (on average: -
15D → 7D Cyl: 0 → ±5D), with an exception for the OPD-scan that offers the range of -
20D → +22D (cylinder 0 → ±12D). 

• Automatic check for quality of measurement: 5 out of the 6 devices provide such estimation. 
The VFA estimates the reliability of the data points by rejecting points having an intensity 
below a certain threshold. Measurements with up till three rejected points are still 
acceptable. Alternatively the user can reject data points by himself. In the OPD-scan this 
is done automatically. Faulty measurements can immediately be redone. The Zywave 
calculates the “repeatability criteria” which should stay below a certain threshold given by 
the manufacturer. The MultiSpot device provides an error map in which the calculated 
wavefront is used to recalculate the corresponding spot pattern. This calculated spot 
pattern is then compared with the experimentally determined one and the deviations are 
shown in the map. The Allegretto uses a similar principle. The WASCA has no quality 
check. 

• Automatic averaging of measurements: in 4 out of the 6 machines some preprocessing of 
the data occurs by averaging. The OPD-scan averages 3 separate measurements and 
checks for their quality. Any wrong measurement is rejected and repeated. The Zywave 
does 5 measurements and uses the “repeatability criteria” to determine the best 3 of them 
for averaging. The MultiSpot device records the wavefronts during a number of seconds. 
The operator can later select a period over which the averaged wavefront is calculated. In 
the Allegretto 4 measurements are taken that can be manually selected to be used for 
averaging. Both the WASCA and the VFA do not use averaging. 

• Inhibition of accommodation: the VFA, OPD-scan, Zywave and Allegretto use fogging, 
while the WASCA and the MultiSpot place the object at optical infinity. In the Allegretto 
the fogging can be switched off if necessary. The MultiSpot also has the possibility to 
compensate the accommodation in real-time using an adaptive mirror that is controlled 
using a feedback loop that minimizes the total aberrations.  

• Possibility of automatic measurement: only the Allegretto and the VFA have this option. In 
both cases an autonomous measurement is taken as soon as the best possible alignment is 
achieved.  

• Speckle reduction: this is achieved by the use of numerical filters (VFA, Allegretto) or by 
averaging multiple measurements (Zywave, Allegretto). The MultiSpot and the WASCA 
respectively use a “wobbling mirror” and a pinhole. Since the OPD-scan uses a low-
coherence LED source speckle reduction is not required for this device.  

 
 

II.3.3 Alignment 
 
• Measurement axis: all devices measure along the Line of Sight (LoS). Only the OPD-scan 

uses the visual axis and converts the results to the LoS standard. 
• Patient target (Figure II-2): most targets point towards the center enhancing the fixation of 

the patient. Only the Zywave has an off-centered target (Figure II-2c), making the patient 
more inclined to look around. This may result in off-axis readings. 

• Alignment procedure for operator (Figure II-3): in 3 out of 6 devices this procedure consists 
of the alignment of a fixed circle (Figure II-3a: OPD-scan and Zywave; no image 
available for the OPD-scan) or cross overlay (Figure II-3b: WASCA) and the pupil itself. 
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Figure II-2: Reproductions of the fixation targets for the patient. (a) VFA, (b) OPD-scan, (c) 
Zywave, (d) WASCA, (e) MultiSpot and (f) Allegretto. 

 
This method solely depends on the operator’s skill to perform this task and is therefore 
sensitive to errors both along the optical axis as in the horizontal and vertical direction. On 
the other hand the WASCA gives offset values that, in the “free running mode” can also 
be used as an alignment tool.   
The VFA determines the pupil edge, from which the pupil center can be found (Figure 
II-3c). The misalignment of the device’s optical axis with respect to the pupil center is 
indicated by a green line. Using this line the alignment can be corrected. 
 

 
Figure II-3: Reproductions of the live pupil images used for alignment of the aberrometer in 
increasing degree of complexity. (a) Zywave, (b) WASCA, (c) VFA, (d) MultiSpot and (e) 
Allegretto. An image of the OPD-scan alignment screen could not be obtained. 
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The MultiSpot device (Figure II-3d) uses two circles, each with a half cross, for the 
positioning along the visual axis. The horizontal positioning is done both visually by 
aligning a series of concentric circles with the physiological pupil as well as by aligning a 
calculated pupil. The calculated pupil is optically conjugated in size and location with the 
spot image on the CCD camera.   
The Allegretto uses an elaborated alignment procedure (Figure II-3e). First the edge of the 
pupil is determined automatically in order to find its center, which is marked by a small 
cross. Next the device is moved along the optical axis until two reflections on the cornea 
(“Purkinje reflections”) coincide with an overlay line. Finally the cross in the pupil center 
has to coincide with an overlay cross for a horizontal and vertical alignment. Because this 
procedure is quite demanding for the operator, as well as the very low alignment tolerance 
(100µm), an automatic measurement procedure has been included. 

 
 
II.3.4 Calculation details    
 
• Number of Zernike polynomials used: this parameter varies from 20 (5th order) for the 

Zywave up till 65 (10th order) for the WASCA. The MultiSpot, the Allegretto and the 
WASCA are able to determine how many polynomials should be used by estimating the 
data quality and pupil size. However this selection can also made by the user. The OPD-
scan, Zywave and VFA use a fixed number of Zernike polynomials.   
In the latest software edition of the WASCA the “zonal reconstruction” technique has 
been introduced for wavefront reconstruction. This does not rely on Zernike polynomials 
or the pupil shape anymore. If desired, the Zernike coefficients can still be calculated as 
an option. 

• Pupil size for Zernike polynomials: the devices studied use either a fixed pupil size of 6mm 
(OPD-scan), the physiological size (Zywave) or a user defined size (WASCA, MultiSpot, 
Allegretto and VFA).  

• Consistent with OSA Zernike notation: only the MultiSpot and the VFA comply with this 
standard. The OPD-scan and the WASCA make an approximation, but without 
normalization or inverted signs. The Zywave and Allegretto use different notations, but 
will include the OSA Zernike standard in their new software. 

• Possibility of aberration film sequence: the WASCA has the possibility to make short 10 
frame movies of a wavefront change. The MultiSpot can record wavefronts up till 20s 
(600 frames) and store them as a list of Zernike coefficients. 

 
 
II.3.5 Data Analysis 
 
• Raw data: is provided by most aberrometers in one way or another. Because of the different 

working principles of the OPD-scan raw data is not available for this device. 
• Refraction: all aberrometers provide this feature. 
• Wavefront: all aberrometers provide this feature. 
• Higher order wavefront: all aberrometers provide this feature. 
• RMS: all aberrometers provide various types of RMS, including total RMS, higher order 

RMS and the RMS for a number of radial or angular orders. 
• 3D wavefront: most aberrometers provide this feature, except the OPD-scan and the VFA 

who will include in their next software release. 
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• Total refraction map: this feature is available in the OPD-scan, the MultiSpot, the Allegretto 
and the VFA. 

• PSF: all aberrometers provide this feature, except the OPD-scan that will include it in the 
next software release. The WASCA gives the “retinal spot image” which is an image of 
the PSF on the retina; the other aberrometers calculated the PSF from the wavefront. 

• MTF: none of the aberrometers provide this feature. 
• Visual acuity: this feature is only present in the WASCA, MultiSpot and VFA devices. 
• Error estimate map: available in the MultiSpot and the Allegretto. The former shows a color 

map, while the latter superimposes the calculated spot over the original spot pattern. 
• Irradiance map: this feature is only present in the WASCA. 
• Zernike coefficient values (on screen): all aberrometers provide this feature. 
• Change of refraction with pupil size: available in the Zywave as a graph. The other devices 

show either the refraction for a fixed set of pupil sizes (OPD-scan, VFA) or allow the user 
to change the pupil size (WASCA, Allegretto). The MultiSpot does not have this feature. 

 
 
II.3.6 Miscellaneous 
 
• Data export of Zernike coefficients: all aberrometers provide this feature. The OPD-scan, 

Zywave and MultiSpot provide the coefficients for the entire measured pupil, while the 
VFA gives the coefficients for four different pupil sizes. In the WASCA and Allegretto 
the user can determine the size. 

• Data export of wavefront maps: most aberrometers have this feature except the Zywave and 
the WASCA which only export Zernike coefficients. 

• Customized printout: all aberrometers provide this feature. 
• Calibration check: all aberrometers use one or two test eyes as a calibration check.  
• Requirement for dilation: in all cases the manufacturers recommend to dilate the pupil to 

enlarge the measurement area.  
 
 
II.3.7 User and patient parameters  
 
These subjective parameters are not included in Table II-1. They represent our own 
experiences and the patient’s impressions about the devices as they were available to us in the 
period of September 2002 to January 2004. 
 
Patient comfort: how does the patient experiences the measurement? 
 
• VFA: no problems. 
• OPD-scan: no problems. 
• Zywave: no problems. 
• WASCA: the spider web target was tiring to some patients after a short while. 
• MultiSpot: no problems 
• Allegretto: the measurement flash is sometimes experienced as uncomfortable. The 

constantly changing sound of the step motors is distracting for some. 
 
Operator Comfort: how does the operator experiences the measurement? (Evaluation 
between: very easy – easy – short learning curve – long learning curve) 
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• VFA: requires a short learning curve to operate. 
• OPD-scan: easy to use with comprehensive software.  
• Zywave: very easy to use. 
• WASCA: easy to use. 
• MultiSpot: requires a long learning curve to operate. 
• Allegretto: requires a short learning curve to operate; comprehensive software. The 

recalibration of the step motors every 5 measurements is time consuming. 
 
II.4 Discussion 
 
II.4.1 VFA  
 
It is the only device that uses ray tracing, making it very flexible and robust to extreme 
aberrations. Measurements were obtained in pathological conditions, such as cataract or 
corneal diseases. The VFA also allows a large amount of freedom to the operator during and 
after the measurements.  
If the optical target is removed the patient is able to see straight through the device to a distant 
target. This way the patient’s accommodation can be tested directly by varying the distance 
between the target and the eye. 
The VFA can be integrated with EyeSys Vista corneal topographer, so the anterior corneal 
aberrations can be subtracted from the total aberrations.  
 
II.4.2 OPD-scan 
 
This device uses automatic retinoscopy and also has an integrated corneal topographer. The 
OPS-scan provides a large list of different corneal and refractive maps that can be interesting 
for a closer study of the eye’s refraction. The compact design with the integrated computer 
and corneal topographer is ideal for small practices. 
When using this device it is very important to make sure the pupil is fully dilated (no size 
variations during the measurement) in order to avoid irregular shapes of the calculated pupil. 
If one wishes to export Zernike polynomial data from the OPD-scan one has to make sure the 
minimal pupil diameter is 6mm as the polynomials are by default calculated for this diameter. 
This means that for smaller pupil sizes measurements are shown for areas outside the 
physiological pupil, introducing erroneous Zernike coefficients.  
During the measurement there is an automatic check for its quality. However, sometimes this 
automatic check fails to reject a bad measurement. Because the user cannot reject bad 
measurements, the whole procedure has to be redone. 
The alignment procedure is not very elaborated and needs a steady hand of the operator. 
Using such a system it is easy to introduce slight misalignments in the wavefront 
measurement, resulting in erroneous values of the tilt and the coma aberrations. 
In the next software release the corneal topography and the wavefront map can be linked to 
each other, which creates the possibility of subtracting the corneal aberrations from the total 
aberrations. This can be interesting e.g. for studying the wavefront effects of cataract or IOLs. 
 
II.4.3 Zywave 
  
Every step of the measurement process is done by consecutively clicking the button on the 
joystick. In one measurement 5 spot patterns are recorded and the best 3 are automatically 
selected using the “repeatability criteria”.  
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During our evaluation period there was one healthy patient for whom 4 out of 5 samples 
showed a cylinder of 0.5D and one showed a clearly false value of -4D. The system failed to 
recognize this extreme value and gave the final astigmatism value of -3.75D, a correction that 
did not correspond with the patients’ objective refraction. Repeated measurements on this 
patient showed similar results.  
Optionally this device the refraction as a function of the pupil diameter is plotted in a graph. 
However, it should be kept in mind that not all calculated points are equally accurate due to 
higher order aberrations. Adding error bars to this graph would benefit to the clinical value. 
The alignment system relies on the alignment of a circle and a crosshair with the pupil edge. 
This simple alignment may introduce errors into the measurements, as well as the fixation 
target which may be confusing to the patient. One alternative is to ask the patient to look 
slightly above the red dot of the laser source for fixation. 
Coupling the Zywave with the Orbscan II corneal topographer would be complementary. 
However this option is not yet available. 
 
II.4.4 WASCA  
 
This Hartmann-Shack based device measures the highest number of samples. It also shows 
the wavefront in case of missing data points, which are represented by blanks on the 
wavefront map. However in order to avoid errors no holes can be allowed inside the Zernike 
pupil when the polynomials are calculated. 
The “Free-running mode” is interesting as it shows a moving image of the wavefront. This 
way accommodative changes can be studied and saved into short wavefront movies.  
The alignment procedure is rather limited, although this can be remedied using the “free-
running mode” and the offset values offered to the operator.  
In the latest software release WASCA offers a new reconstruction algorithm based on zonal 
reconstruction, resulting in an improved resolution of the wavefront images.  
 
II.4.5 MultiSpot  
 
This is the only aberrometer in our study that contains a bimorph mirror for the purpose of 
compensating the patient’s accommodation in real time. The MultiSpot can also be used to 
simulate the ideal vision by compensating the patient’s aberrations.  
Other interesting features of this device are the possibility of recording short wavefront 
movies and the error map that shows the difference between the measured and the calculated 
spot pattern.  
One disadvantage of the MultiSpot is that it might take the operator some time to learn how to 
use the device properly.  
 
II.4.6 Allegretto 
 
The Allegretto has an exceptionally elaborated alignment procedure, resulting in a highly 
accurate location of the pupil centre. However, in case of elliptical pupil shapes this 
estimation is sometimes displaced from the true centre and the alignment needs to be done 
manually. Also the source intensity is sometimes hard to adjust, depending on the installed 
camera. 
This aberrometer is characterized by a long list of available options for the fine-tuning of the 
measurements and data representation that are interesting for wavefront research. But because 
of this large number of options some training is required to operate the Allegretto to its full 
potential. 
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II.5 Conclusion 
 
When choosing an aberrometer it is important to keep in mind the purpose it will serve in 
daily clinical practice. If the aim is to use it as an extended corneal topographer, many of the 
options in the more elaborate systems are useless. These same options however could be very 
helpful for clinical studies. Either way, in our opinion there are a number of minimal 
requirements the aberrometer should meet in performing the measurements, such as: 
 
• A highly accurate alignment procedure 
• A source wavelength in the middle of the visual range, or a numerical compensation of the 

chromatic aberrations.  
• An averaging over several measurements 
• An automatic test of the measurement quality 
• An inhibition procedure for accommodation 
 
These parameters should at least be considered as equally important as the data assessment, 
such as the number of samples, the number of Zernike polynomials and the dioptric range of 
the prefocus. However, most studied aberrometers do not provide all of these features. 
Besides the common parameters already offered by each aberrometer, such as the refraction 
values, the total and higher order wavefronts, the total and higher order RMS values and the 
Zernike coefficient values the minimal data representations should be: 
 
• An error estimate map 
• A refraction map 
• The PSF 
• The MTF 
• A graph of refraction vs. pupil size (including an error estimate on the refraction) 
 
Furthermore a depiction of the raw data can be useful in some cases, as well as the simulated 
visual acuity map. The Zernike notation details and the data export functions are only 
interesting when the numerical data is used for comparative studies using data from different 
wavefront devices.  
The consistency of the measurements by these aberrometers in terms of refraction and 
wavefront aberrations has not been determined in this paper. This will be discussed in a 
second paper. 
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III.1 Abstract 
 
Purpose: To compare and mutually validate the measurements of 6 aberrometers: the Visual 

Function Analyzer (Tracey), the OPD-scan (ARK 10000), the Zywave, the WASCA, the 
MultiSpot Hartmann-Shack device and the Allegretto Wave Analyzer. 

Setting: University Hospital Antwerp, Antwerp, Belgium 
Methods: This prospective study was conducted on a group of 44 healthy eyes having a 

refraction ranging from -5.25D to +5.25D (cyl. 0D to -2D). For each aberrometer and each 
eye the refractive and the averaged Zernike data was used to calculate a number of 
parameters, such as various kinds of RMS, the Strehl ratio and the MTF ratio. A repeated 
measures ANOVA test, followed by a Newman-Keuls test in case of a significant 
difference, was used to compare these parameters. This was complemented by paired T-
tests. A similar analysis is done for the comparison of the variances of these parameters. 

Results: The aberrometers give comparable values for all Zernike polynomials and derived 
parameters, with the following exceptions: the OPD-scan underestimated the polynomials 
describing 4- and 5-fold symmetries and the VFA slightly overestimated the astigmatism 
terms. The 3rd order radial RMS value was different for each device, as well as the RMS 
in the central 2mm zone. The WASCA presented the lowest variance.  

Conclusion: These results suggest that for healthy eyes all aberrometers produce globally 
similar results but punctual variations did occur.  

 
 
III.2 Introduction 
 
When comparing aberrometers, two aspects that should be kept in mind: the technical aspect, 
comprising the working principles, the practical realization of the aberrometers and the extra 
features offered, and the statistical analysis of the measurements when applied on a test group. 
This second aspect will be the focus of this paper. 
Recently several papers have been published in which some of the basic techniques used in 
modern aberrometers are compared. The most important of these studies are:  
 
• A comparison99 of the Smirnov and the Hartmann-Shack method 
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• A comparison100 of Hartmann-Shack and the laser ray tracing  
• A comparison101 of Hartmann-Shack and the laser ray tracing and the spatially resolved 

refractometer.  
• A comparison102 of Hartmann-Shack and a crossed-cylinder aberroscope.  
 
In each of these papers the comparisons were developed extensively. However, since each of 
these tests were done on experimental aberrometer setups, located in laboratories and under 
perfectly controlled circumstances, these studies only verify the principles used in each 
aberrometer rather than the devices themselves. This is the reason why these papers do not 
necessarily validate the practical realizations of the aberrometers as they are on the market 
today. 
In one abstract103 it has been attempted to compare two clinical aberrometers, the Zeiss/ 
Meditec WASCA Hartmann-Shack aberrometer and the Schwind ORK Tscherning 
aberrometer. It was noted in this study that the RMS values of the total wavefront for both 
devices were comparable, but that the RMS values of the higher order polynomials were 
significantly different. Another study104 compared 6 aberrometers: Alcon LADARwave, B&L 
Zywave, Nidek OPD-scan, Topcon Wave-Front Analyzer, Tracey Visual Function Analyzer 
and the Wavefront Sciences COAS (Zeiss WASCA), and it was concluded that measurements 
by different devices could not be used interchangeably. Also the suggestion was given that 
wavefront devices with less than 70 data points in a 6mm pupil might have a larger variance 
in their measurements. However no significant relationship to this effect could be found. 
Finally a last paper105 describes a comparison between the VISX WaveScan system 
(Hartmann-Shack) and the Tracey Visual Function Analyzer. The authors concluded that the 
measurements of both devices were reliable and reproducible, compared to each other and to 
the manifest refraction. The VFA was found to be more robust to large refractive errors. 
In this paper the comparisons will be expanded to a larger number of parameters for 5 
commercially available clinical aberrometers and one custom-made device, comprising 4 
different wavefront sensing techniques. This will be done on a series of healthy eyes. 
 
 
III.3 Patients and Methods 
 
III.3.1 Patients 
 
The test group consisted of 44 eyes (22 subjects) with an average age of 31 ± 7 years. Only 
subjects with mild refractive errors were allowed, ranging from -5.25D to +5.25D (cyl. 0D to 
-2D). For each aberrometer a number of 7 to 15 subjects from this group were measured, 
determined by their availability at the time a device was at our disposal. The subjects were 
dilated with 0.5% Tropicamide in case of a pupil diameter below 6mm. Once dilated for the 
first aberrometer, a subject was consistently dilated further throughout the test. At the end of 
all tests 7 eyes were measured with each aberrometer and could be included in the overall 
comparison. The other measurements were used for the indirect comparison by means of a 
model described further on. 
 
III.3.2 Aberrometers 
 
The aberrometers in this study are: 
 
• Visual Function Analyzer (VFA; Tracey)60, 61: based on ray-tracing of individual beams. 
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• OPD-scan (ARK 10000; Nidek)85, 86: based on automatic retinoscopy.  
• Zywave (Baush & Lomb): a Hartmann-Shack52 system. 
• WASCA (Zeiss/ Meditec): a high resolution Hartmann-Shack system 
• MultiSpot 250-AD94 Hartmann-Shack sensor: a custom made Hartmann-Shack system with 

an adaptive mirror for accommodation correction, engineered by the Laboratory of 
Adaptive Optics at the Moscow State University. 

• Allegretto Wave Analyzer (WaveLight): an objective Tscherning device68.  
 
Further details on the working principles of these machines can be found in [13].  
 
 
III.3.3 Test period  
 
Since it was logistically impossible to have all the aberrometers at our disposal at once the 
tests were spread over two periods: the OPD-scan, Zywave Allegretto and MultiSpot were 
tested from October 2002 until February 2003, the WASCA and the VFA were tested from 
November 2003 until January 2004. Even though the higher order aberrations might vary over 
these time spans, it is reported106 that these variations are an order of magnitude smaller than 
the higher order aberrations themselves. Nevertheless the subject’s refraction was used as a 
means to verify this assumption.   
 
 
III.3.4 Measurements and Calculations 
 
With each aberrometer five measurements were preformed on a number of eyes from the test 
group. For each eye the average and the variance of the different parameters were calculated 
and used for further study. The clinical refraction was determined by means of a Nidek ARK-
700 autorefractometer. 
As the wavefronts are often expressed in terms of Zernike polynomials a selection of these 
polynomials can easily be used for comparison purposes. However at the time this study was 
performed the Zernike polynomials provided by most aberrometers could not be used in a 
direct manner for several reasons: 
 
• The pupil size used for calculating the Zernike polynomials varies per aberrometer. The 

OPD-scan uses a fixed pupil size of 6mm, while the WASCA, MultiSpot, VFA and the 
Allegretto allow the user to define the size. The Zywave on the other hand used the 
physiological pupil size. 

• Each device used a different convention in the order, sign and normalization of their 
Zernike polynomials.  

• The number of Zernike polynomials used varied with each aberrometer, ranging from the 5th 
(Zywave) up till the 10th order (WASCA). 

 
The first and second points can easily be compensated by respectively resizing and a 
renormalization for the polynomials. The third point was solved by truncating the Zernike 
series at the 5th order (see Figure III-1). This was either done automatically by the aberrometer 
itself or manually in the Zernike series. A comparison of the total RMS value before and after 
truncating served as quality measure for the wavefront fit by the truncated series. All Zernike 
polynomials used in this study are defined on a 6mm pupil and renormalized to meet the OSA 
standards42. 
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Figure III-1: Pyramidal oversight of the first 21 Zernike polynomials. The radial orders 
(characterized by index n) are found in the rows, the angular orders (characterized by index 
m) are listed in the columns. 

 
By means of the refraction and the Zernike data the following parameters were derived that 
can be used for comparison: 
 
• Refraction (sphere, cylinder and axis): the refraction parameters as given by the 

aberrometer. 
• Zernike polynomials from the 2nd up till the 5th radial order: resized to a 6mm pupil and 

renormalized if necessary to meet the OSA standards.  
• Total and higher order RMS: calculated from the Zernike polynomial data. This is an 

indication of the flatness of the wavefront and is calculated using:  
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with W(x,y) a point on the wavefront, W the average of the whole wavefront and N the 
number of wavefront pixels. In case the Zernike polynomial coefficients ai are known, this 
can be simplified to:  
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Formula (III-2) is easy to calculate and can be modified to find the RMS associated with a 
specific set of N Zernike terms. Usually the total RMS (all terms of radial order higher 
than 1) and the higher order RMS (all terms of radial orders higher than 2) are used.  

• RMSrad of the 2nd up till the 5th radial order: RMS-values calculated separately for each 
radial order (rows of the Zernike pyramid; Figure III-1). These parameters are 
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automatically given by most aberrometers and are often used in studies; however their 
exact clinical meaning is not always clear. 

• RMSang of the 0th up till the 5th angular order (or meridional frequency): RMS-values 
calculated separately for each angular order (columns of the Zernike pyramid; Figure 
III-1). The angular order RMS has the advantage that it is sensitive to specific wavefront 
symmetries (e.g. all orders of astigmatism or trefoil) rather than to a sum of all kinds of 
symmetries available in one radial order as in the previous set of parameters (e.g. in the 
third order radial RMS the contributions of the primary trefoils and the primary comas are 
added).  

 
However in a recent report107 it was stressed that RMS is not a reliable measure for the 
estimation of the visual quality of a patient since the contribution of each Zernike mode to the 
visual quality is not equal. Terms at the side of the Zernike pyramid (i.e. angular order m = ± 
radial order n) have less influence on the image quality than those at its center (m = ±1, 0). In 
order to counter this effect we also used a number of Zonal RMS (ZRMS) parameters that are 
not influenced by this problem, which are RMS values calculated by means of formula (III-1) 
in the zones defined in Figure III-2. In this approach the surface of the wavefront is 
considered, rather than its Zernike decomposition, giving a measure of flatness within the 
zones instead of over the whole pupil area. While a region with an unusual aberration shape 
will go unnoticed using the global values given by RMStot or RMSHO they might be found 
using ZRMS. 
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Figure III-2: Definition of the 9 zones used for zonal reconstruction. 

 
Besides a direct comparison of the above parameters for each aberrometer, it is also possible 
to do an indirect comparison with a model. This indirect comparison can serve as a 
benchmark that every aberrometer should meet. The advantage of this approach is that there is 
no longer a need to use a fixed standard group of subjects. A number of parameters can be 
mapped in function of the refraction by means of measurements on a large group of subjects. 
This data can be further analyzed with e.g. linear regression. However it is important to note 
that by its nature the indirect method is less accurate than the direct statistical comparison, 
making it more interesting for the purpose of calibration rather than for comparison. 
In this study we will use this method for: 
 
• Sphere: the value of the sphere given by the aberrometer in function of the clinical sphere. 

This is modeled by:  
 
       SphereA = aS·SphereC + bS                  (III-3)  
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The fit parameters in (III-3) ideally have values aS = 1 and bS = 0D, with a tolerance of 
±5% for aS and ±0.25D for bS (which is the smallest possible variation on the 
autorefractometer measurements). 

• Cylinder: the value of the cylinder given by the aberrometer in function of the clinical 
cylinder. Here model (III-3) applies again, with the same tolerances. 

• Axis: value of the axis given by the aberrometer in function of the clinical axis. Again model 
(III-3) applies, but here the ideal fit parameters have the values aA = 1.00 ± 0.05 and bA = 
(0 ± 10)°. 

• Spherical equivalent: value of the spherical equivalent (calculated by: Sphere + Cylinder/2) 
given by the aberrometer (ASE) in function of the clinical spherical equivalent (CSE). 
Again model (III-3) can be used with the same tolerances as for the sphere. 

• RMStot: the evolution of the total RMS in function of the clinical spherical equivalent (CSE). 
This function has a V-shape and can be described by:  
 
    RMStot = atot·│CSE│ + btot                  (III-4)  
 
with │·│ the absolute value. Multiplying both RMStot and atot in (III-4) by sign(CSE) 
results in a linear curve that can be fitted by linear regression.   
A theoretical value for atot can be estimated by assuming that CSE depends on the 
normalized defocus coefficient C2

0 as follows:   
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with CSE in dioptres and R the pupil radius. The approximation in (III-5) can be made 
since C2

0 << R. Next it follows that:  
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for R = 3mm. If we assume that no large quantities of astigmatism or higher order 
aberrations are present the Zernike defocus coefficient C2

0 can be used as a rough 
approximation of the wavefront. This results in:  
 

           CSE
D
mCRMStot ⋅==

µ25.20
2                 (III-7)  

 
So the ideal parameter values in (III-4) for atot = 2.25µm/D with a tolerance of 5% and for 
btot = 0 ± 0.56µm (corresponding to a clinical refraction of ±0.25D by means of formula 
(III-7). 

 
 
III.3.5 Statistical comparison 
 
The direct statistical comparison of the parameters is done using repeated measures ANOVA 
with a significance level of 95% over the 7 healthy eyes that have been consistently tested 
with each aberrometer. In case the initial assumption of equal parameter values for each 
aberrometer is rejected, a Newman-Keuls test is performed to determine the deviating 
aberrometer(s). 



 - 73 -

Next a student T-test is performed on each pair of aberrometers using a number of eyes tested 
by both devices. Since the T-test studies pairs of aberrometers, more details on the 
correspondences between devices can be found. However this also increases the possibility of 
false rejections. The ANOVA on the other hand studies the whole group and is as such less 
sensitive. Note that since the premises of both statistical methods are different it is possible 
that some of the results might seem contradictory.  
Finally the variances on the measurements for a selection of parameters were analyzed in the 
same way. As a reference the minimum and maximum values of the variance sizes are given 
for each parameter. 
In order to reduce the chance of false negatives in the following, we say that the parameter 
value for one aberrometer differs significantly from that of other aberrometers if the ANOVA 
or at least two T-tests are found to be significant. One single significant T-test will be 
disregarded. 
The statistical power of the T-tests have also been calculated for an effect size d = 0.8 (in 
standard deviation units) using the method defined in [108].  
 
 

III.4 Results  
 
Direct comparison of the wavefront images of the same eye recorded by each device is the 
most direct way to compare, as it is done in Figure III-3. It can be seen that the general shape 
of the wavefront is maintained, although some differences exist between the locations of the 
central minimum. This can be explained by slight errors in the alignment. Also the magnitude 
of the wavefronts seems to vary, more specifically with the Zywave, where the amplitude 
seems to be lower than those of the other measurements. Similar differences were found in all 
of the other 6 eyes studied. 
 
An extensive oversight of the statistical comparison for the parameters is given in Table III-1, 
and that of their variances in Table III-2. Both tables consist of two parts: on the left side the 
ANOVA and the Newman-Keuls results are shown, the right side shows the results of the 
paired T-tests. Table III-2 also shows the minimum and maximum variances for each 
parameter. In both tables significant differences are indicated by a gray shade, statistical 
powers of the tests were included in caption.  
 

 
Figure III-3: Wavefront aberrations of eye ES OS (ref: -1.25; -1.00 @12°) measured with 
each aberrometer. The steps correspond with 2µm increments. 
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Table III-1: results ANOVA and T-test on the values of the given parameters 
    Significant differences (p < 0.05) are indicated by gray shade. 
 

T - test 
 VFA OPD-scan Zywave WASCA MultiSpot 

 

 
 

ANOVA 
** 

Newman-Keuls ** 

 O** Z** W*** M** A** Z* W** M* A* W** M* A* M** A** A* 
Sphere .001 WAO//OZV//ZVM .01 .91 .43 .86 .01 .27 .64 .58 .21 .07 .52 <.01 .06 .48 .05 

Cyl <.001 OZAW//ZAWM//V .01 .01 <.01 .02 <.01 .04 .02 .15 .29 .24 .61 .53 .35 .39 .24 

Axis .151  .15 .30 .48 .22 .51 .23 .15 .50 .09 .12 .32 .04 .15 .24 .09 

Z3 = Z2
-2 .305  .02 .01 .47 .36 .04 .09 .01 .50 .03 .13 .93 .08 .55 .27 .65 

Z4 = Z2
0 .050  .60 .65 .06 .76 .04 .02 .33 .74 .05 .07 .17 <.01 .02 .76 .09 

Z5 = Z2
+2 <.012 ZOAWM//V .01 .01 .26 .05 .01 <.01 .12 .95 .77 .22 .13 .02 .08 .11 .84 

Z6 = Z3
-3 .425  .46 .09 .91 .15 .19 .51 .46 .34 .70 .97 .53 .98 .78 .86 .54 

Z7 = Z3
-1 .143  .08 .75 .01 .08 .18 .05 .92 .08 .02 .22 .33 .82 .69 .40 .16 

Z8 = Z3
+1 .447  .64 .13 .40 .87 .36 .54 .19 .99 .85 .36 .64 .55 .07 .49 .90 

Z9 = Z3
+3 .690  .90 .53 .60 .12 .70 .80 .89 .25 .98 .88 .08 .56 .36 .99 .05 

Z10 = Z4
-4 .391  .34 .50 .18 .70 .43 .06 .33 .28 .78 .31 .42 .15 .02 .26 .62 

Z11 = Z4
-2 .706  .97 .18 .87 .68 .56 .86 .96 .27 .63 .18 .36 .73 .58 .40 .32 

Z12 = Z4
0 .667  .67 .45 .46 .49 .43 .45 .48 .33 .41 .83 .17 .30 .59 .67 .68 

Z13 = Z4
+2 .141  .06 .25 .86 .37 .18 .09 .03 .05 .02 .32 .26 .39 .46 .44 .93 

Z14 = Z4
+4 .009 MOWZA//WZAV .04 .39 .05 .01 .21 .11 .06 .29 .11 .50 .09 .71 .12 .44 .02 

Z15 = Z5
-5 .378  .30 .60 .03 .33 .41 .20 .30 .36 .55 .18 .05 .15 .98 .75 .96 

Z16 = Z5
-3 .002 V//MWOZA .01 .01 .49 .11 .05 .28 .49 .06 .97 .27 .26 .23 .28 .34 .07 

Z17 = Z5
-1 .062  .03 .51 .02 .01 .07 .66 .41 .01 .39 .15 .09 .37 .30 .78 .29 

Z18 = Z5
+1 .877  .79 .84 .90 .21 .84 .69 .40 .17 .55 .79 .67 .28 .80 .40 .06 

Z19 = Z5
+3 .715  .80 .67 .96 .28 .99 .43 .61 .55 .84 .46 .05 .34 .03 .82 .19 

Z20 = Z5
+5 .168  .17 .16 .06 .05 .84 .01 .59 .04 .50 .03 .01 .48 .35 .39 .14 

RMStot <.001 
MZO// OA// 

WA//AV .01 <.01 <.01 <.01 .07 .99 .02 .58 .19 <.01 .54 .35 <.01 .99 .18 

RMSHO .001 MO//OZWAV .05 .09 <.01 .01 .16 .54 .67 <.01 .75 .93 .01 .72 .02 .92 .01 

RMSrad 2 <.001 ZMO//AW//V .01 <.01 .02 <.01 .07 .95 .01 .88 .19 <.01 .83 .38 <.01 .90 .27 

RMSrad 3 .002 AMOZW// OZWV .02 .17 <.01 <.01 .01 <.01 .02 <.01 <.01 .71 <.01 <.01 <.01 <.01 .43 

RMSrad 4 .012 WAOMZ//ZV .07 .19 <.01 .02 .01 .06 .88 .58 .73 .18 .02 .05 .62 .95 .64 

RMSrad 5 .122  .84 .54 .09 .03 .76 .07 .12 .05 .60 .06 .01 .39 .46 .11 .11 

RMSang 0 .005 MZOAW// OAWV .09 .05 .34 .02 .58 .79 .03 .87 .23 .03 .69 .48 .01 .87 .31 

RMSang 1 .018 MOWA// OWAZV .05 .34 <.01 .01 .24 .04 .40 .02 .18 .36 .01 .17 .03 .69 .02 

RMSang 2 .001 MZOAW//V .01 .01 <.01 <.01 .01 .87 .13 .23 .79 .21 .30 .78 .15 .35 .20 

RMSang 3 .050  .93 .06 .01 .08 .39 <.01 .18 <.01 .03 .25 .36 .45 .41 .91 .13 

RMSang 4 <.001 O//WMZA//V <.01 .02 <.01 .03 <.01 <.01 .01 <.01 <.01 .39 .24 .63 .69 .20 .41 

RMSang 5 .029 O//WVMZA <.01 .11 .59 .33 .12 <.01 .01 <.01 .04 <.01 .69 .19 .12 .04 .22 

ZRMS 1 <.001 OMA//AZW// ZWV <.01 .26 <.01 <.01 .01 .02 .03 .47 .02 .89 .01 .24 <.01 .09 .04 

ZRMS 2 .010 MOZAW// OZAWV .13 .14 .02 .01 .18 .17 .25 .61 .14 .28 .07 .98 .01 .65 .08 

ZRMS 3 <.001 MZOWA//V .01 <.01 <.01 <.01 .01 .31 .79 .19 .47 .61 .07 .65 .20 .74 .07 

ZRMS 4 .038 MOZAW// OZAWV .03 .06 .12 .01 .08 .90 .36 .72 .20 .49 .68 .52 .10 .70 .28 

ZRMS 5 .012 MOZAW//AWV .03 .05 .04 .01 .03 .70 .10 .97 .35 .25 .79 .59 .09 .89 .18 

ZRMS 6 .050  .03 .06 .17 .03 .06 .63 .17 .54 .17 .11 .43 .72 .03 .46 .34 

ZRMS 7 .001 MZOWA//AV .01 <.01 <.01 .01 .21 .77 .34 .57 .10 .21 .49 .19 .30 .35 .09 

ZRMS 8 .035 ZWMOA//AOV .05 .01 .02 .10 .07 .32 .28 .83 .66 .89 .71 .58 .61 .35 .98 

ZRMS 9 .029 MZOAW//AWV .02 .04 <.01 .05 .07 .77 .44 .29 .73 .18 .51 .96 .32 .82 .50 

 
* Standard group, 10 eyes, CSE -4.5D -> +4.25D; Confidence level: 95% (p < 0.05); statistical power β = 0.72 
** Standard group, 7 eyes, CSE -2.50D -> +4.25D; Confidence level: 95% (p < 0.05); β = 0.57 
*** Standard group, 12 eyes, CSE -2.50D -> +4.25D; Confidence level: 95% (p < 0.05); β = 0.79 
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Table III-2: results ANOVA and T-test on the variances of the given parameters 
     Significant differences (p < 0.05) are indicated by gray shade. 

 
T - test 

 VFA OPD-scan Zywave WASCA MultiSpot 

 min → max 
ANOVA 

** 
Newman-Keuls ** 

 O* Z* W** M* A* Z* W* M* A* W* M* A* M* A* A* 

Sphere .119→.227D .345  .84 .22 .10 .65 .20 .15 .12 .58 .15 .98 .22 .54 .48 .79 .32 

Cyl .035→.142D .007 WZVA// ZVAMO .24 .31 .01 .09 .91 .06 .03 .93 .20 .01 .06 .33 .03 .11 .03 

Axis 2.11→20.2° .103  .10 .31 .04 .07 .39 .16 .07 .15 .11 .14 .57 .60 .02 .09 .24 

Z3 = Z2
-2 .076→.213 µm .028 WZAMV// ZAMVO .60 .04 <.01 .77 .55 .11 .06 .53 .30 .54 <.01 .18 <.01 .14 .58 

Z4 = Z2
0 .202→.447 µm .287  .39 .36 .02 .57 .18 .74 .10 .71 .53 .26 .25 .78 .17 .31 .14 

Z5 = Z2
+2 .076→.229 µm .068  .44 .10 .01 .88 .64 .05 .01 .81 .49 .01 .37 .50 .13 .15 .53 

Z6 = Z3
-3 .046→.232 µm <.001 WZV//ZVA//O <.01 .96 <.01 .20 .11 <.01 <.01 .03 .02 .04 .24 .17 .01 .02 .74 

Z7 = Z3
-1 .053→.208 µm .367  .69 .49 <.01 .24 .36 .54 .21 .45 .55 .01 .79 .96 .03 .02 .55 

Z8 = Z3
+1 .075→.241 µm .054  .17 .94 .01 .72 .76 .13 .03 .02 .11 .19 .66 .81 .10 .09 .51 

Z9 = Z3
+3 .050→.262 µm .002 WZMVA//O .01 .29 .02 .35 .78 .01 <.01 .01 .18 .17 .88 .34 .04 .23 .43 

Z10 = Z4
-4 .002→.104 µm <.001 OWZ//WVM//VMA <.01 .48 <.01 .58 .08 .01 <.01 <.01 .01 .29 .37 .16 .08 .04 .18 

Z11 = Z4
-2 .045→.119 µm .266  .11 .37 .04 .49 .45 .21 .15 .21 .59 .18 .61 .77 .27 .24 .56 

Z12 = Z4
0 .040→.139 µm .353  .39 .60 .01 .75 .25 .67 .19 .42 .20 .22 .81 .34 .07 .58 .14 

Z13 = Z4
+2 .045→.168 µm .002 WVMZA//O .02 .66 .03 .81 .67 .04 .01 .08 .09 .04 .98 .79 .04 .01 .74 

Z14 = Z4
+4 .002→.135 µm .038 OWVMZ// WVMZA <.01 .63 .02 .78 .36 <.01 .01 .03 .07 .02 .98 .43 .14 .18 .46 

Z15 = Z5
-5 .002→.107 µm .209  .03 .12 .38 .44 .28 <.01 .01 .01 .13 .66 .10 .49 .51 .48 .27 

Z16 = Z5
-3 .036→.087 µm .050  .02 .14 .52 .42 .04 .28 .08 .05 .52 .82 .62 .41 .75 .07 .11 

Z17 = Z5
-1 .042→.108 µm .528  .59 .28 .88 .12 .70 .97 .75 .38 .56 .29 .10 .18 .21 .44 .08 

Z18 = Z5
+1 .042→.137 µm .186  .10 .19 .17 .52 .87 .61 .21 .04 .13 .43 .21 .36 .21 .58 .39 

Z19 = Z5
+3 .033→.155 µm <.001 VMWZA//O <.01 .03 .07 .47 .20 .01 .02 <.01 .09 .53 .09 .63 .19 .54 .34 

Z20 = Z5
+5 .002→.098 µm <.001 O//VMZW// WA .01 .30 .18 .17 .01 .01 .01 .01 <.01 .50 .83 .07 .37 .23 .01 

RMStot .138→.294 µm .223  .35 .33 .01 .54 .28 .66 .07 .71 .89 .19 .33 .45 .10 .03 .69 

RMSHO .072→.304 µm .085  .09 .16 .01 .38 .70 .15 .05 .18 .10 .03 .69 .57 .01 .04 .64 

RMSrad 2 .146→.404 µm .180  .25 .34 .01 .51 .23 .95 .11 .57 .95 .10 .45 .84 .08 .04 .45 

RMSrad 3 .081→.233 µm .015 AWMZV// ZVO .22 .77 .01 .29 .15 .15 .08 .09 .06 .05 .30 .02 .61 .82 .56 

RMSrad 4 .045→.150 µm .417  .25 .40 .17 .20 .14 .53 .23 .48 .43 .25 .91 .86 .07 .03 .88 

RMSrad 5 .045→.163 µm .068  .14 .10 .19 .83 .22 .62 .15 .08 .14 .28 .14 .27 .11 .73 .05 

RMSang 0 .186→.441 µm .245  .22 .35 .02 .49 .17 .83 .32 .49 .96 .16 .45 .72 .21 .23 .28 

RMSang 1 .068→.195 µm .163  .41 .87 .01 .63 .91 .41 .12 .34 .33 <.01 .44 .52 .07 .01 .53 

RMSang 2 .078→.237 µm .003 WZA//ZAV//AVOM .36 .04 .01 .51 .48 <.01 .01 .90 .22 .03 .07 .20 .05 .12 .07 

RMSang 3 .054→.211 µm <.001 WZVAM//O <.01 .43 .03 .44 .65 .01 <.01 .12 .02 .43 .18 .10 .08 .08 .67 

RMSang 4 .002→.088 µm .002 O//WZVMA <.01 .39 .02 .89 .27 .02 <.01 .03 .01 .51 .60 .21 .31 .09 .26 

RMSang 5 .001→.080 µm .001 OV//VWMZ//MZA .01 .24 .42 .19 .13 <.01 <.01 <.01 .02 .50 .84 .28 .41 .18 .19 

 
* Standard group, 6 eyes, CSE -2.50D -> +4.25D; Confidence level: 95% (p < 0.05); statistical power β = 0.49 
** Standard group, 11 eyes, CSE -2.50D -> +4.25D; Confidence level: 95% (p < 0.05); β = 0.75 
 
 
The values in the ANOVA column represent the significance that can be attributed to the 
initial supposition that the values for that particular parameter measured by each aberrometer 
can be considered equal. If the supposition is rejected (p < 0.05), the Newman-Keuls analysis 
shows which aberrometer deviates from the others. This is presented in the following format: 
each aberrometer is represented by the first letter of its name and adjacent letters indicate a 
confirmation of the initial supposition between these devices. If however letters are separated 
by the double dash symbol (‘//’), no significant relationship exists between them. E.g. O // 
VMZW // WA means that the measurements of the OPD-scan are significantly different from 
those of the other devices and that there is a full mutual confirmation between the VFA, the 
MultiSpot, the Zywave and the WASCA. The WASCA measurements also correspond with 
those of the Allegretto, but the latter does not correspond with any of the other five devices. 
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The large sets of paired T-tests are organized per aberrometer. In the first 5 columns the VFA 
is compared with the other devices. Next the results for the OPD-scan and respectively the 
Zywave, the WASCA, the MultiSpot and the Allegretto are shown in an analogue order. 
Again the supposition of equality is rejected at probabilities lower than 5%. 
In the following an interpretation for the significant differences is given per parameter group. 
 
 
III.4.1 Refraction 
 
The ANOVA results in Table III-1 indicate that significant differences exist for the values of 
the sphere and cylinder given by each device. Newman-Keuls and the paired T-test show that 
the VFA gives slightly higher sphere values than the WASCA and the Allegretto (a difference 
of about 0.5D). For the cylinder the VFA is significantly higher than its fellow aberrometers 
(about 0.2D). For the axis values no significant differences are found. 
Studying the refraction variances by ANOVA (Table III-2) it is seen that these are different 
for the cylinder, where the WASCA is shown to be significantly lower than the MultiSpot and 
the OPD-scan. This is confirmed by the T-tests.  
 
 
III.4.2 Zernike polynomials 
 
No significant differences were found between the aberrometers for nearly all of the Zernike 
coefficient values. The only exceptions are the primary astigmatism Z2

+2, the primary tetrafoil 
Z4

+4, the secondary trefoil Z5
-3 and the secondary coma Z5

-1: 
 
• Z2

+2: the T-test gives significantly higher values for the VFA compared to OPD-scan, 
Zywave and the Allegretto, which corresponds with the slightly higher values of the 
astigmatism found in the previous paragraph. This is confirmed by ANOVA. 

• Z4
+4: the VFA is significantly higher than the MultiSpot and the OPD-scan (confirmed by 
both ANOVA and T-tests).  

• Z5
-3: the VFA gives lower values than the other aberrometers (confirmed by the T-test for 
OPD-scan and the Zywave). 

• Z5
-1: the VFA values are significantly lower than those of the OPD-scan, MultiSpot and 
WASCA (not confirmed by ANOVA). 

 
A look at Table III-2 immediately shows that the correspondences found for the Zernike 
coefficients are no longer true for their variances. This is especially found in coefficients 
located at the side of the Zernike pyramid (Figure III-1), mainly due to two reasons. The first 
reason is that the variance of the OPD-scan is sometimes significantly higher than those of the 
other aberrometers (such as for Z3

-3, Z3
+3, Z4

+2 and Z5
+3) and sometimes significantly lower 

(for Z4
-4, Z4

+4 and Z5
+5). This will be clarified further in the next paragraph when the RMS 

values are discussed. The second reason is that the variances of the WASCA are found to be 
relatively low. This is confirmed by ANOVA and the T-tests for Z2

+2, Z2
-3, Z3

+3, Z4
-4 and Z4

+2. 
 
 
III.4.3 RMS 
 
Using the Newman-Keuls test it is found that the RMStot values of both the VFA and the 
WASCA differ significantly from those of all the other devices except the Allegretto 
(confirmed by T-tests). For the higher order RMSHO the MultiSpot gives significantly lower 
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values and the VFA tends to give slightly higher values. The variance of RMSHO on the other 
hand has a lower value for the WASCA (T-tests, unconfirmed by ANOVA).  
In the RMS of the radial Zernike orders more differences are found:  
 
• RMSrad 2: T-tests show exactly the same differences as RMStot. Since these Zernike terms 

usually have the largest values, this is not surprising.  
• RMSrad 3: nearly no significances at all using both statistical methods.  
• RMSrad 4: the VFA has significantly higher values than the Allegretto, MultiSpot and the 

WASCA, which is confirmed by ANOVA. 
• RMSrad 5: the MultiSpot has significantly lower values than the Zywave and the VFA, 

however this is not confirmed by ANOVA. 
 
No significant differences were found in the variances of the radial orders, with the exception 
of RMSrad 3 (significantly higher values for the OPD-scan according to ANOVA, but 
unconfirmed by T-tests). The RMS of the angular Zernike orders shows the following:  
 
• RMSang 0: significant differences are found between the WASCA on the one side and the 

OPD-scan and Zywave on the other side. ANOVA however shows a significant difference 
between the VFA and the MultiSpot (confirmed by T-test). 

• RMSang 1: lower values of the MultiSpot compared to all devices, which is confirmed by 
ANOVA for Zywave and VFA. 

• RMSang 2: higher values for the VFA compared to all other aberrometers, confirmed by 
ANOVA. 

• RMSang 3: higher values for the OPD-scan (T-tests), but unconfirmed by ANOVA.  
• RMSang 4: the OPD-scan gives lower values than the other devices, while the VFA gives 

higher values. Both are confirmed by ANOVA. 
• RMSang 5: the OPD-scan gives lower values than the other devices, which is confirmed by 

ANOVA. The WASCA also shows lower values. 
 
The low values of both RMSang 4 and RMSang 5 for the OPD-scan indicate that the associated 
Zernike coefficients (Z4

-4, Z4
+4, Z5

-5 and Z5
+5) may be underestimated, which is confirmed by 

the raw Zernike coefficient data. However as these coefficients may have positive and 
negative values (with an average of 0) this was not seen in the statistical comparison above. 
RMS on the other hand does not depend on the coefficient sign, making this kind of 
deviations detectable. Another confirmation is given by the significantly low variance values 
of the OPD-scan for RMSang 4 and RMSang 5 (using both methods). The variances of RMSang 3 
do not correspond either, but here the value of the OPD-scan is higher than that of the others 
(ANOVA), while for the RMSang 2 variances the WASCA has significantly lower values 
(ANOVA and T-tests).  
The comparison of the RMS in the 9 zones as defined in Figure III-2 shows that a distinction 
should be made between the results in the central 2mm zone and those in the other 8 zones: in 
the central zone a large number of significant differences are found, while in the rest only the 
VFA deviates from the other aberrometers. These results are confirmed by ANOVA. 
 
 
III.4.4 Interaction analysis between the eye and the aberrometers 
 
With the previous results in mind one may ask in how far they depend on our choice of 
subjects. To answer this question we calculated for each aberrometer and for each parameter 
the interquartile range and determined the number of parameters for which each eye was an 
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outlier*. These results were put in a table upon which a two-dimensional χ2 test was 
performed to determine what interaction between an eye and an aberrometer was relevant. 
This way it was found that no interaction exists between the 7 eyes and the 6 aberrometers for 
the results in Table III-1 (χ2(30) = 28,8; p = 0.52).  
For the parameter’s variances from Table III-2 however two eyes showed a relevant 
interaction (χ2(25) = 63,9; p < 0.001): 
 
• Eye #4: showed 15 outliers for the Allegretto, most of which in the higher quartile. 
• Eye #7: showed 10 outliers for the OPD-scan, most of which in the higher quartile. 
 
This could be an indication that some of the relevant differences or equalities in parameter 
variances found earlier for these two aberrometers are less reliable.  
 
 

 
Figure III-4: change in aberrometer refraction in function of the clinical refraction measured 
by an autorefractometer. This can be compared with the model (bold line) and the given 
tolerances (dashed lines). (a) Aberrometer spherical equivalent versus clinical spherical 
equivalent; (b) aberrometer sphere versus clinical sphere; (c) aberrometer cylinder versus 
clinical cylinder; (d) aberrometer axis versus clinical axis.  
                                                 
* Calculated using SPSS and defined as: values in boxplots that have a distance of at least 1,5 times the box 
length from either the upper or lower box edge. For most cases this box length can be set equal to the 
interquartile range. 
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Figure III-5: Change in RMS values given by the aberrometers in function of the clinical 
spherical equivalent measured by an autorefractometer. This can be compared with the model 
(bold line) and the given tolerances (dashed lines). (a) Total RMS versus clinical spherical 
equivalent; (b) Higher order RMS versus clinical spherical equivalent. 
 
III.4.5 Indirect comparison using linear models 
 
The refractive calibration of the aberrometers can be checked by means of the curves given in 
Figure III-4. Here the refractive values given by the aberrometers are compared with those 
given by the autorefractometer.  
For each of these parameters one would expect a straight line, as described by model (III-3). 
Figure III-4a shows the aberrometer spherical equivalent (ASE) versus the clinical spherical 
equivalent (CSE), together with a model of the ideal case and two dashed lines indicating the 
tolerances defined earlier. All aberrometers follow the model and most of their data points lay  
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Table III-3a: Slope of the curves in Figure III-4a (ASE vs. CSE)  
Aberrometer # eyes aref  bref R2 

VFA 21 1.0473 0.1026 0.9632 
OPD-Scan 14 1.0099 0.1038 0.9783 

Zywave 20 1.0337 0.0794 0.9688 
WASCA 29 1.0365 0.0193 0.9892 
MultiSpot 17 1.0076 0.0231 0.9605 
Allegretto 18 1.0314 -0.1517 0.9763 

 
 
Table III-3b: Slope of the curves in Figure III-4b  
Aberrometer sphere vs. clinical sphere  
Aberrometer # eyes aref  bref R2 

VFA 21 1.0477 0.2203 0.9621 
Zywave 20 1.0368 0.2051 0.9616 

OPD-Scan 14 1.0253 0.1035 0.9718 
WASCA 29 1.0362 0.1776 0.9879 
MultiSpot 17 0.9939 0.2065 0.9400 
Allegretto 18 0.9939 -0.1050 0.9733 

 
 
Table III-3c: Slope of the curves in Figure III-4c  
Aberrometer cylinder vs. clinical cylinder  
Aberrometer # eyes aref  bref R2 

VFA 21 0.4366 -0.5405 0.1220 
OPD-Scan 14 0.6644 -0.1795 0.8417 

Zywave 20 0.8341 -0.3263 0.7669 
WASCA 29 0.6392 -0.1826 0.5409 
MultiSpot 17 0.9171 -0.3069 0.6677 
Allegretto 18 0.7205 -0.2759 0.5742 

 
 
Table III-3d: Slope of the curves in Figure III-4d  
Aberrometer axis vs. clinical axis  
Aberrometer # eyes aref  bref R2 

VFA 21 0.9993 7.6887 0.8568 
OPD-Scan 14 0.8475 0.7841 0.8051 

Zywave 20 0.7841 11.499 0.7734 
WASCA 29 0.9330 2.4917 0.8611 
MultiSpot 17 0.5820 25.919 0.3679 
Allegretto 18 0.9016 7.9266 0.8070 

 
 
Table III-4: Slopes of the curves describing RMStot vs. CSE  
Aberrometer # eyes atot (µm/D) btot (µm/D) R2 

VFA 21 2.5306 -0.0269 0.9679 
OPD-Scan 14 2.2884 -2.241 0.9671 

Zywave 18 2.4321 -0.1647 0.9624 
WASCA 29 2.1341 -0.6848 0.9793 
MultiSpot 17 2.4233 -0.2016 0.9529 
Allegretto 16 2.3996 -0.6060 0.9773 
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within the tolerated area (dashed lines). If a linear fit is applied to this data the parameters in 
Table III-3a are obtained. Both the aref and the bref parameters for each device remain within 
the given tolerances. 
A similar graph can be made of the aberrometer sphere versus the clinical sphere (Figure 
III-4b) and again a linear fit is given (Table III-3). Both the graph and the fit parameters are 
similar to those of the spherical equivalent and follow the proposed model.  
However when the aberrometer cylinder and the clinical cylinder are compared, larger 
differences are seen (Figure III-4c, Table III-3c). A rough linear relationship can still be 
distinguished, but the associated R2 values, that give a measure of the correspondence 
between both data sets, are rather low. This is due to the fact that the values for this parameter 
are closely packed around the origin with only a limited number of higher values, so no 
conclusion can be drawn from this data.  
 
In the aberrometer axis data a large spreading is found (Figure III-4d, Table III-3d), although 
the linear relationship is clearly present for each device except for the MultiSpot. In order to 
obtain a good linear fit 180° was added to some of the data points near the end of the graph 
with a maximum of 210°. Analogously 180° was subtracted from some of the data points near 
the beginning of the graph with a minimum of -30°. 
 
The total RMS in function of the clinical spherical equivalent is shown in Figure III-5a. Again 
each aberrometer seems to follow the model quite well.  The majority of the data points 
remain within the tolerance range, except in the central region. This deviation is mainly due to 
higher order aberrations that were not included in the model. Most of the linear fit parameters 
(Table III-4) however do not seem to remain within the tolerance range, probably due to the 
same reason. 
As could be expected, the graph of the higher order RMS in function of the clinical spherical 
equivalent only shows random fluctuations (figure 5b). As a result no model can be defined.  
 
 

III.5 Discussion and conclusion 
 
From this extensive list of results several trends can be derived: 
 
• The underestimation of the Zernike terms Z4

-4, Z4
+4 and Z5

+5 by the OPD-scan and the 
corresponding overestimation of Z3

-3, Z3
+3, Z4

+2 and Z5
+3. This can perhaps be due to the 

nature of the retinoscopy technique which measures the refraction along meridians in the 
pupil area, rather than on a fixed grid, as is the case for the other devices. Even though 
these underestimated Zernike terms have relatively little influence on the visual 
performance, the detection of four- and fivefold symmetries in the wavefront may be 
problematic for the OPD-scan.   

• The VFA showed differences in a number of radial and angular RMS values and many of 
the ZRMS, where higher values were measured. This corresponds to the slightly higher 
astigmatism values found in Table III-1.  

• The WASCA device is found to have relatively low variances on many of the studied 
parameters, an indication that measurements done with this device are highly repeatable. 

• Both the astigmatism and the astigmatism axis values (Figure III-4c and d) for each device 
did not correspond very well with the clinical values, which shows that both values may 
change drastically with a minor alteration in wavefront. 

• The underestimation of RMSHO by the MultiSpot, which is probably due to a pupil resizing 
procedure included in its software and the presence of a bimorph mirror in its setup. 
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• The strong differences in the 3rd order radial RMS (corresponding to the primary coma and 
trefoil terms) for nearly all machines are striking and need to be looked at in more detail. 

• The considerable differences found in the central 2mm zone of Figure III-2, which is the 
zone where usually the Purkinje reflections of the source occur. Although most 
aberrometers have probably incorporated means to avoid any negative influence by these 
reflections, it might be just these countermeasures, which are different for each device, 
that cause the differences in this area. 

 
These results can also be compared with some technical features of the aberrometers, as 
discussed in the first part of the study: 
 
• Number of samples: In reference [104] a relationship was suggested between the amplitude 

of the variance and the number of samples taken by the aberrometer. This could not be 
confirmed in this study as the variance amplitudes for each aberrometer seemed to vary 
strongly for each parameter. Although this could be an explanation for the relatively low 
variances of the WASCA (1452 samples). 

• Alignment procedure: no significant relationship was seen between the aberrometers’ 
alignment procedure and the variance. The Allegretto and the MultiSpot, which had 
highly elaborate alignment procedures, did not have significantly lower variances. 
However this should not lead to the conclusion that a good aberrometer alignment is of 
lesser importance. 

• Automatic averaging: there does not seem to be any relationship between variance 
amplitudes and the automatic averaging over a number of measurements. The three 
devices that include some form of automatic averaging (OPD-scan, Zywave and 
Allegretto) did not have significantly lower variances compared to the other machines. 
Most companies will advise it is better to do several measurements and compare these in 
some way. We agree with this advice, especially when applied to customized refractive 
surgery where the treatments relies on the measurements obtained. 

 
When considering the results of this paper it is important to realize that since human eyes are 
not standardized, as would be the case e.g. in an optical eye model, a measurement by one 
aberrometer deviating from its fellow aberrometers is not necessarily ‘wrong’. Further 
comparisons need to be done at a later stage using more objective models to determine the 
true deviations. Whether these deviations are clinically significant remains to be studied. 
 
The results in this study only represent the outcomes as provided by the aberrometers as they 
were made available to us during the test period. These are under constant technological 
evolution in order to reach more accurate and reproducible results. 
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PART II 
 
 

Laminographic phase reconstruction of  
the ocular anterior segment 

 
 
 
 
 
 
 
 
 
 
 
 

The search for the source of ocular wavefront aberrations is usually 
limited to the curvatures and thicknesses of the individual refractive 
media and the irregularities of the anterior corneal surface. Even 
though it is important from the geometric optics point of view, this 
approach is not sensitive enough to understand the origins of higher 
order aberrations. In the following a laminographic method is proposed 
as a first step to investigate these origins. Also a number of suggestions 
are given for further improvement of the method. 
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Chapter IV Three-dimensional reconstruction of objects 
using laminography 

 

IV.1 Historical introduction to laminography 
 
Short after Röntgen first reported his discovery of X-rays109, a large number of imaging 
applications were found for the newfound radiation. Especially the medical sciences benefited 
from its strongly penetrating power. However due to the way X-ray images were recorded 
only areal attenuation images could be obtained, with darker patches where the radiation was 
absorbed and lighter patches where the radiation could pass through the object unharmed. All 
spatial information about the exact 3D location inside the object of a specific part of the 
image was lost. 
A first solution to this problem was given by Pohl who invented the ‘Omniskop’ (see Figure 
IV-1), a device in which a patient could be positioned in many directions, allowing the 
capture of X-ray images under different angles. This gave the doctor a better understanding of 
the internal structures of the patients’ body. 
Later Pohl110, and simultaneously with him Ziedses des Plantes111, described a method to 
reconstruct one single plane (the ‘focal layer’) inside an object with a minimization of the 
influence of other layers above and below this specific layer. This method, later dubbed 
‘Laminography’, consists of a photo plate mechanically linked with a moveable source. By 
moving the combination of source and photo plate into different directions (see Figure IV-2), 
in such a way that parts of the focal layer are always projected on the same spot of the photo 
plate with the same orientation and magnification, a clear image of the focal layer can be 
obtained. Parts of other layers, above and below the focal layer, will move during the motion 
of the source and their influence is spread out over a larger area, resulting in background 
intensity.  
This technique is based on the parallax of the different source positions and will be 
mathematically explained in the following. Please note that in this chapter only the 
application of laminography for attenuations with X-ray images is used. Phase laminography, 
which requires refractieve corrections, will be explained in Chapter V. 
 

 
Figure IV-1(left): “Omniskop” by Ernst Pohl (1922) (image taken from [112]) 
Figure IV-2(right): “Planigraph” by Bernhard Ziedses des Plantes (1932)111 
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IV.2 Mathematical introduction 
 
 
IV.2.1 Definitions 
 
First a number of definitions need to be given for the proper mathematical description of 
laminography. Suppose we have a focal plane, located within a three-dimensional object and 
a point source located at a height h from this focal plane, which in turn is at a distance d from 
the projection plane (Figure IV-3). We name the perpendicular projection of the source in the 
focal plane origin o, with Cartesian axes (x,y). In the projection of the focal plane a similar 
system of axes (X,Y) can be defined in source projection O.  Any point p(x,y) in the focal 
plane at a distance r from origin o will be projected on a point P(X,Y) in the projection plane 
at a distance R from the origin O. The relationship between R and r is given by: 
 

 rMr
h

dhdhR ⋅=
+

=+= :tan)( α                 (IV- 1) 

 
Here M = (h+d)/h is the magnification factor of the projection which depends on the relative 
distances between the source, the focal plane and the projection plane. In the same way 
follows that:  
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Figure IV-3: definitions of the different axes in the projections 

 
IV.2.2 Reconstruction methods 
 
Suppose a series of N source positions Si (i = 1:N) along a circle with an angular step ∆θ = 
2π/N relative to the rotation axis (Figure IV-4). An angle of incidence ψ can be defined 
between the rotation axis and the line connecting a source position Si and the cross- section 
point of the rotation axis and the focal plane.  
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Figure IV-4: Projections of the object at several source positions 
 
For each pixel P(Xi,Yi) of each projection in Figure IV-4 an imaginary line can be drawn back 
to the source Si, representing the optical path that the ray ending up in (Xi,Yi) has followed. 
Each of these rays crosses a number of voxels (volume elements) of the object that attenuate 
its intensity. When these rays end up on the detector, only the total sum of these attenuations 
is measured; all data regarding the attenuation of the individual voxels along the ray’s path is 
lost.  
In the following we will discuss three different methods that can be used to reconstruct the 
attenuations of the focal plane or even the whole object:  
 

• Tomosynthesis 
• Spiral scan 
• Reversed ray tracing 
• Other techniques  
 

Each of these methods will be discussed in the following. 
 
 
a) Tomosynthesis 
 
In tomosynthesis the reconstruction occurs by superimposing all N projections. If this is done 
in such a way that the points (Xi,Yi) of each projection coincide, with (Xi,Yi) the corresponding 
projection points of (x,y) in the focal plane, the image of the focal plane is  
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Figure IV-5: reconstruction of the focal plane of Figure IV-4 by tomosynthesis. (a) 
Reconstruction of point p(x,y) in the focal plane, (b) Reconstruction of the circle located in 
the focal plane, (c) Reconstruction of point q(x’,y’) above the focal plane, (d) Reconstruction 
of the triangle located below the focal plane. These reconstructions can be compared with a 
standard radiogram recorded along the rotation axis (e). 
 
 
reinforced, while information from other layers above and below the focal layer will be 
averaged away into background intensity. This is shown in Figure IV-5(a) in which the point 
p(x,y) in the focal plane is reconstructed by the superposition of four projections. In this 
reconstruction the information of point q(x’,y’), which is located above the focal layer, is 
spread over four separate points. Each of these four points Qi(X’i,Y’i) will have a significantly 
lower contrast than the reconstruction ( ) ( )∑ =

=
N

k kkk YXPYXP
1

,,  of p(x,y).  
This difference is better visible in Figure IV-5(b) where the circle in the focal plane has been 
clearly reconstructed and the other two shapes are randomly superimposed. Increasing the 
number of projections will considerably improve this difference. 
 
The main advantage of tomosynthesis is that it requires little calculations, resulting in short 
calculation times. Moreover, it is easy to expand this technique to reconstruct planes near the 
focal plane by shifting the projections until points Qi(X’i,Y’i) coincide. This is shown in Figure 
IV-5(c) and (d) for point ( ) ( )∑ =

=
N

k kkk YXQYXQ
1

','','  and the triangle. However the 
distance between the reconstructed and the focal plane can not be too large as the 
reconstruction quality severely decreases for larger distances.  
 
The size of the shift required for the reconstruction of the plane containing q(x’,y’) can be 
found by a similar formula as that of the vertical resolution δn (see IV.2.3b). 
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Figure IV-6: Reconstruction of the focal plane of Figure IV-4 using spiral scan: (a) 
reconstruction of point p(x,y) in the focal plane, (b) reconstruction of the circle in the focal 
plane. 
 
b) Spiral scan 
 
This reconstruction method is closely related to tomosynthesis and refers to a modified way of 
recording the N projections. Here the track of the source positions describes a spiral or a 
series of concentric circles, varying both the rotation angle ∆θ and the angle of incidence ψ. 
This results in a better spread of the information coming from layers different than the focal 
plane, improving the results of the averaging (see Figure IV-6).  
The advantages and limitations of this technique are similar to those of tomosynthesis.  
 
c) Reversed ray tracing 
 
In this method the imaginary rays going from the source Si to pixels (Xi,Yi) of each projection 
are used. Each voxel that comes into contact with a ray is added the intensity value of the 
associated pixel (Xi,Yi) of this ray. If this is done for all rays, a reconstruction of a whole 
segment of the object can be made, rather than of a single plane. A segment is said to be well 
reconstructed if rays from all projections pass through it. 
This technique can be used both for sources moving on a circle (as in Figure IV-3) or on a 
spiral as discussed above. It is also possible to apply a numerical band-pass filter on the 
projections prior to the reconstruction, which in some cases improves the quality of the 
reconstruction. The main disadvantage of this method is the high number of calculations 
required for the reconstruction, resulting in long calculation times. 
Usually this method is called ‘backprojection’, but in order not to confused this technique 
with ‘filtered backprojection’, a non-related reconstruction method, we dubbed it here 
‘reversed ray tracing’. 
 
 
d) Other techniques 
 
Several other techniques known from tomography can also be used for this kind of 
reconstructions. The most practical method for this situation is filtered backprojection adapted 
with a fan beam algorithm113, which requires a very large number of projections perpendicular 
to the line connecting the source and the center of the focal plane at various angles of 
incidence. These projections are different from the horizontal projections used earlier.  
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This technique is not capable of giving the focal plane directly as tomosynthesis did, but 
instead a whole segment of the object can be reconstructed at once after a lengthy calculation. 
Since filtered backprojection cannot be used in the case of a refractive object114 (such as the 
eye), this method will not be elaborated further in this work. 
 
Another reconstruction technique is algebraic reconstruction (ART)115, which supposes that 
each voxel of the object is an unknown in a system of equations set out by the each pixel of 
the projections. This system of equations is extremely large and requires some algebraic 
ingenuity to make it more manageable. Even in this manageable form, the necessary 
calculations are still extensive. 
Although this technique might be interesting for our application (better contrast sensitivity, 
less smearing), we lacked the time to implement it.  
 
 
IV.2.3  Resolution 
 
For the calculation of the ideal horizontal and vertical resolution we need the angles and 
distances defined in Figure IV-7. In the following no scattering or refraction is included, 
which will both reduce the actual resolution to a certain extend.  
 

a) Horizontal resolution 
 
Suppose δm is the distance between neighboring points p and q1 located in the focal plane n 
and call ∆ the distance between the projections of these points on a plane at a vertical distance 
dn from the focal plane. As follows from equation (IV -1) the relationship between δm and ∆ 
is given by: 
 

 ∆
+

=⇒
+

=∆
nn

n

n

nn

dh
h

mm
h

dh
δδ                  (IV-3) 

 
The values for δm can be found by choosing ∆ equal to the pixel size of the camera capturing 
the projection, which is the highest possible resolution in case the size of the system’s PSF 
equals one pixel. Decreasing the pixel size ∆ and increasing the distance dn will result in 
higher horizontal resolutions (i.e. smaller values for δm).  
 

b) Vertical resolution 
 
Here the distance δn between two neighboring points p and q2 located in different planes n 
and n+1 is calculated. In Figure IV-7 it can be seen that: 
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We also know that:  
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Figure IV-7: Definition of the distances needed to calculate the horizontal resolution δm and 
the vertical resolution δn.  
 
Since dn+1= dn – δn and hn+1= hn + δn, this can be rewritten as: 
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So that δn can be calculated:  
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Again ∆ is chosen to be the pixel size of the camera. Formula (IV-7) shows that the vertical 
resolution increases (i.e. δn decreases) when the pixel size ∆ decreases or when the angle of 
incidence ψn increases. The ideal case would be ψn = π/2, where the tangent becomes 
maximal. 
 
Formula (IV-6) can also be used to calculate the shift ∆ needed for the superposition of the 
projections in tomosynthesis if a plane other than the focal plane is being reconstructed. Here 
δn is the distance between the focal plane and the reconstructed plane.  
 

IV.3 Laminographic reconstruction 
 
Based on the theory given above the properties of these techniques will be studied by means 
of a number of reconstruction of virtual objects.  
 



 - 92 -

IV.3.1 Reconstruction of a general object 
 
Suppose an object as shown in Figure IV-8, composed out of a cross with an open center that 
has been rotated 90° over 64 planes. Suppose also that the object has an attenuation µ that is 
uniformly distributed over the object and that it is suspended in a vacuum (so there is no 
attenuation from the medium around the object). From the top view (top center) only the 
central hole can be clearly seen, together with a blurred cross shape. This is the view one 
would obtain with a standard radiogram along the rotation axis*. 
For the laminographic reconstructions we choose plane 30, near the center of the object, to be 
the focal plane of the projections. We take the angle of incidence ψ = 40º and the number of 
projections at 36. 
When both tomosynthesis and reversed ray tracing are applied to this setup, the reconstructed 
cross-sections shown in the bottom of Figure IV-8 are obtained. The reconstructions are 
similar in quality and clearly show the inner part of the cross. Note the circular artifact in the 
center of the cross.  
In Figure IV-9 a hollow cylinder is added to the object and reconstructed with the same 
parameters as before. The top view now only shows the cylinder clearly. The reconstructions 
of this object are similar to the ones in Figure IV-8, but the central artifact has almost 
disappeared.  
 
 

 
Figure IV-8: reconstruction of a virtual object composed of a twisted cross. A cross-section of 
the object at half height (layer 30) can be made by tomosynthesis and reversed ray tracing 
with N = 36 and ψ = 40° (bottom center and right).  

                                                 
* For better viewing these images were inverted, meaning that bright areas represent high attenuations. This will 
be done further throughout the rest of this chapter. 
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Figure IV-9: reconstruction of a virtual object composed of a twisted cross and a hollow 
cylinder. A cross-section of the object at half height (layer 30) can be made by tomosynthesis 
and reversed ray tracing with N = 36 and ψ = 40° (bottom center and right).  

 

 
Figure IV-10: the contrast change in the reconstructions of the Figure IV-9 object at different 
angles of incidence ψ (tomosynthesis, N = 12 projections).  
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IV.3.2 Dependency on the angle of incidence  
 
In formula (IV-7) it was found that there is a direct dependency of the vertical resolution δn 
and the angle of incidence ψ. This will be illustrated in the following paragraph using the 
object shown in Figure IV-9.  
 
At lower ψ -values (e.g. 20º), only the central part of the reconstruction corresponds with the 
cross-section of the object (shown for tomosynthesis in Figure IV-10). The outer part is 
severely blurred due to the larger displacements between layers for this part of the object. But 
with an increasing ψ a clear improvement of the reconstruction quality is seen here, resulting 
from the increasing vertical resolution. At ψ = 90º (as is the case in tomography) the best 
possible resolution is achieved, although in practice this is not always possible for each 
application. 
The reconstructions of ψ = 0º, 20º, 40º and 60º can also be used to calculate the spiral scan 
reconstruction of the object, which shows less artifacts then the ψ = 60º case. The contrast of 
this image can slightly be enhanced by means of a spatial ramp filter that amplifies the outer 
parts: 
 I’ (ρ) = ρ·I(ρ)                    (IV-8) 
 
where ρ is the radial distance to the rotation axis. 
 
 
IV.3.3 Reconstruction of layers other than the focal layer 
 
Although laminography is intended for the reconstruction of the focal layer alone, it is also 
possible to reconstruct other layers. In tomosynthesis, as shown before, this is done by 
shifting the projections before the superposition. However it can easily be understood that in 
the projections parts of the object close to the source will be enlarged more than parts further 
away from the source (but closer to the camera). Therefore simply shifting the projections 
will only work well for a limited region above and below the focal layer with more or less the 
same magnification. It is possible to compensate for this effect by enlarging or shrinking 
specific parts of the projections using a model of the object, but this is a troublesome process. 
 

 
Figure IV-11: reconstruction of layers near the focal layer using tomosynthesis and reversed 
ray tracing (ψ = 40°, N = 18). 
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Reversed ray tracing on the other hand reconstructs the whole object by its nature and is 
therefore more suitable for the reconstruction of other planes. 
This is demonstrated in Figure IV-11 where the reconstructions by both techniques are shown 
for a range of layers. The focal layer is well reconstructed in both cases, as well as a region of 
±4 layers around the focal layer. But at larger distances (±8 layers and further) the images 
clearly starts to blur, especially the central cylinder. Also a difference is visible between the 
two techniques for layers close to the projection plane (+16 layers): while reversed ray tracing 
still provides a decent reconstruction, tomosynthesis shows a severely distorted picture and 
the central cylinder has decreased in diameter. However in all images for both techniques the 
orientation of the twisted cross is still correctly represented. 
 
 

IV.3.4  Contrast sensitivity 
 
One other parameter that can be investigated is the contrast sensitivity of the reconstruction, 
which is a measure for the smallest contrast differences within the object’s attenuation 
distribution that can still be reconstructed by means of reversed ray tracing.  
Again we use the object of Figure IV-9, but this time the object, with an uniformly distributed 
attenuation µ, is immersed in a medium with an attenuation of α·µ (0 ≤ α ≤ 1). Up till now α 
was always assumed to be equal to 0.  
In the following α is given values ranging from 0.9 up till 0.995, resulting in the 
reconstructions shown in Figure IV-12. It is seen that for lower values of α (i.e. values up till 
α = 0.95) the reconstruction still strongly resembles the previous ones as in Figure IV-9. 
However with decreasing attenuation contrast, the object becomes more and more 
unrecognizable. At an α -value of 0.99 the reconstruction of the cross’ arms and the cylinder 
seem to form a square; however the round central hole is still clearly visible. Finally for α = 
0.995 this feature also fades, resulting in a solid square. 
It is important to note that contrast sensitivity depends on the sensitivity of the camera used to 
register the projections. The results shown in Figure IV-12 are calculated using 8-bit 
projections. If this number were increased to 10 or 16 bits the contrast for the given α -values 
would be much better and the fading of the object would take place at α-values much closer to 
1. 
 

 
Figure IV-12: reversed ray tracing reconstruction of the object in Figure IV-9 in case of 
objects with limited contrast (ψ = 40°, N = 18). 
 
 

IV.3.5 Smearing (wash-out) 
 
By far the biggest problem in laminographic reconstruction is smearing or wash-out. This is 
the effect that object regions with large attenuations not only affect the corresponding parts of 
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the reconstruction, but also other regions in the path of the rays connecting the attenuating 
region and its projection. A similar effect results from a region with a low attenuation. 
Smearing can also be understood using Figure IV-4. Suppose point p(x,y) has a strong 
attenuation, then the corresponding projection point P(X,Y) = Σi pi (with pi all the object 
points on the ray connecting the source and P, which by consequence goes through p) will 
have a higher total attenuation value as well. When the reconstruction of the object is made by 
either reversed ray tracing or tomosynthesis using projection P(X,Y), not only point p(x,y) in 
the reconstruction will have a high attenuation, but also all the points pi. This results in a 
‘shadow’ of the strongly attenuating region in each source direction θ. If several of the 
shadows coincide, they add up to a clearly visible area in the reconstruction. 
Figure IV-13 illustrates this using a disc shaped object floating in empty space. Even though 
in reality the regions above and below the disc have no attenuation, the reconstruction gives 
them a strong signal (bottom right). A vertical slice through the reconstructed object (bottom 
left) shows a more dramatic picture in which the disc has been distorted to a diamond shape. 
Note that the bottom side of the diamond is longer then the top side as a result of the 
spreading of the beam coming from the source. 
To illustrate the smearing of regions with low attenuations we inverted the above object and 
reconstructed it as well (Figure IV-14). Here the same remarks apply as in Figure IV-13.  In 
this case two new artifacts appear: a dark region at the edge of the object and two white 
outward fans at the side of the diamond. 
 
 

 
Figure IV-13: reconstructions of an object with high contrast, in the form of a disc in an 
empty space. Layers with a strong signal (center) are usually well reconstructed. Layers with 
little or no signal (right) can in the reconstruction show a strong signal due to wash-out. 
(Reversed ray tracing, focal layer: 30, ψ = 40º, N = 18). 
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Figure IV-14: inverted version of the object shown in Figure IV-13 (same parameters).  
 
From both figures it can be seen that smearing decreases with increasing angles of incidence 
ψ, and is therefore a direct result of the limited angle problem113. At the ideal value of ψ = 90° 
the smearing is reduced to minimum and the reconstruction will closely resemble the object*.  
 

IV.4 Conclusion 
 
The previous results lead to the conclusion that laminography can provide a decent 
reconstruction of a single focal layer inside an object, either by tomosynthesis or by reversed 
ray tracing, under specific circumstances: 
 

• The attenuation should not have rapid changes along the rotation axis in the vicinity of 
the focal plane to avoid the blurring shown in Figure IV-10.  

• Strong contrasts, either near of far away from the focal plane, should be avoided as 
shown in Figure IV-13 and Figure IV-14.  

 
However both of these effects can be reduced by increasing the angle of incidence ψ.  
 

                                                 
* The projections at ψ = 90º will look like the vertical cross-section given in the top right of Figure IV-13. The 
horizontal reconstruction will be a polygon with 2N sides. Increasing the number of projection will give a better 
approximation of the round disc. Note that in this specific case it is also possible to reconstruct the object 
perfectly with only two projections: the top view and one side view. 



 - 98 -



 - 99 -

Chapter V Laminography applied to the human eye  
 
 
In the previous we discussed attenuation laminography for X-rays. Hereby we ignored any 
refraction that the beams passing through the object might undergo. This approximation 
works well for highly energetic radiation, which for most applications is hardly influenced by 
this effect. But for light near the visual spectrum (wavelengths of 390-780 nm) it becomes 
very prominent and needs to be taken into account. A number of procedures needed to correct 
for the refraction are described in this chapter. 
When applied to the eye laminography can provide information on the sources of aberration, 
such as their location and relative influence, and provide insight into the distribution of 
refractive index within the eye. This could lead to an in-vivo method to determine the gradual 
changes in refractive index distribution within the crystalline lens, which has been studied 
extensively in vitro 116, 117, 118, 119, 120 but is to date still not well understood.   
In this chapter a proof of principle approach is given to use laminography in a refractive 
system, more specifically in the human eye. Note that only phase projections are considered 
in the following. 
 
V.1 Aberration laminography 
 
A light ray entering the eye is refracted four times before it reaches the retina. As each 
refraction changes the direction of the ray (see Figure V-1) the ray tracing going from the 
projection towards the secondary point source on the retina no longer encloses a ‘tilted cone’ 
as was the case in the non-refractive case (Figure IV-4). Instead it forms a more complex 
volume which may be estimated by means of ray tracing and an eye model. The reversed ray 
tracing technique can easily be modified to include these refractive corrections.  
The tomosynthesis technique on the other hand does not require any changes, since by default 
an aberrometry recording is focused on the pupil. Because of this, and because all light 
coming from the retina has to pass through the pupil opening, the pupil can be considered as 
the focal plane of reconstruction. As before, a simple superposition of the projections can 
provide a reconstruction of the pupil plane.  
 

 
Figure V-1: refraction of the projections in the right eye. 
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For both techniques the angle of incidence ψ is defined between the optical axis and the chief 
ray, the line connecting the center of the projection and the pupil center. Angle θ indicates the 
orientation of the projection, with θ = 0º the horizontal hemi-meridian in the nasal direction 
and progressing in the counter-clockwise direction.  
 
 

V.2 Refractive correction 
 
In the following paragraph the two-dimensional case is discussed first, in which the rays 
remain within a plane containing the optical axis (‘skew rays’). Later this is expanded to the 
three-dimensional case (‘meridional rays’). In both cases the refractive corrections in the 
reversed ray tracing technique are done by means of the Navarro wide angle schematic eye 
(see I.2.2b).  
 
 
V.2.1 Two-dimensional ray tracing 
 
Suppose a two-dimensional optical system as shown in Figure V-2 consisting of two optical 
interfaces m and m+1. A light ray originating from the source S, located on interface m and 
with an angle αm with the optical axis can now be traced through the system. The aim is to 
determine the Point of Incidence (POI) on the (m+1)th interface and the refracted angle αm+1 
so the full path of the ray is known.  
First define the coordinates (see Figure V-2): 
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with ∆zm+1 the aspherical curvature of the (m+1)th optical interface and rm+1 its radius of 
curvature originating from the Center of Curvature (COC). A ray leaving source S under an 
angle αm will then intersect the (m+1)th interface in POI, which is found by solving the 
following system:  
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The solution of (V-2) for ∆zm+1 is:  
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with:  
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Figure V-2: Diagram of the two-dimensional ray tracing through an optical system. 

 
Once POI is determined by means of (V-2) and (V-3) the refraction of the ray on the (m+1)th 
refractive surface can be calculated using Snell’s Law: 
 
 γγ sin'sin1 mm nn =+                     (V-5) 
 
where the angles γ and γ’ are determined with respect to the normal vector on the refractive 
interface in POI. In this point the local radius of curvature Rm+1 is: 
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The angle χm+1 between the optical axis and the normal vector in POI is given by: 
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From Snell’s Law (V-5) and the identities mmm αγαγχ −=+= ++ 11 ' (convex surface, rm+1 > 0) 
and mmm αγαγχ +=−= ++ 11 ' (concave surface, rm+1 < 0) follows: 
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This should be repeated for each optical interface in the system until a screen is reached. 
Figure V-3 shows this for a Navarro eye model and a source at infinity. Note the outer rays 
that focus slightly in front of the retina due to the model’s spherical aberrations. 
The two-dimensional ray tracing calculation described here can only be used in situations in 
which both the rays and the optical axis remain within one single plane. This is for example 
the case for on-axis sources in the absence of non-rotationally symmetric wavefront 
aberrations.  
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Figure V-3: results of the two-dimensional ray tracing applied to a Navarro model. 

 
 
V.2.2 Three-dimensional ray tracing 
 
When the rays do not remain within one single plane throughout the optical system, which is 
the case in most applications, the incident ray is determined by the source point S and two 
angles αm and βm shown in Figure V-4. Again the objective is to find the POI at interface m+1 
and the angles αm+1 and βm+1 in order to define the refracted ray. 
 
As before the following points need to be defined: 
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Here the system to solve is given by: 
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and the solution is:  
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with:  
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Figure V-4: Diagram of the three-dimensional ray tracing through an optical system. 
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Note that taking βm = 0 results in the two-dimensional case given in formulas (V-3) and (V-
4). Following the same reasoning as in the two-dimensional case we find for the local radius 
of curvature in the POI: 
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and again (V-7) is used to find χm+1.  
Next we need to make the assumption that COC is located on the optical axis (i.e. only 
rotationally symmetric aberrations are considered). In this case we can define a number of 
lines: 
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These lines form the sides of a triangle with top angle π-γ (convex surface) or γ (concave 
surface), so by means of the cosine rule we find: 
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Then from Snell’s Law (V-5) we find: 
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which is valid for refraction at both convex and concave surfaces. However for the calculation 
of the angles αm+1 and βm+1 a distinction needs to be made between these two cases.  
 
 

a) Convex surfaces (rm+1 > 0) 
 
The description of refraction at a convex interface (Figure V-5a) can be considerably 
simplified by defining a new base (ξ,η) within the plane containing the points S, POI and 
COC. Suppose a new base (x’, y’, z’) in POI, parallel to the axes (x,y,z), then we find in this 
base: 

 
Figure V-5: Refraction of the incident ray on a convex (a) and a concave (b) surface. 
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where ( )( )',',' zyx  indicates the axes system in which the coordinates are given.  
The ξ-axis is chosen on the normal line of POI and directed towards COC. The unit vector 
ξ
r

is then defined by: 
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For the definition of unit vector η

r
a point µ is needed, which is the perpendicular projection of 

the source S on the extension of the normal line through POI: 
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The components of η

r
are then given by subtracting the coordinates of points µ and S and 

shifting it back to POI: 
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with ( ) 'i  (i’ = x’,y’,z’) the three coordinates of vector η

r
 and c a normalization constant: 
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Using an arbitrary point ( )( )ηξγγκκ ,'sin,'cos=

r
on the refracted beam the refraction angles 

αm+1 and βm+1 can be derived. When κ is chosen to be equal to 1, we find: 
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with: 
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b) Concave surfaces (rm+1 < 0) 
 
This situation is shown in Figure V-5b and differs from the convex case in a number of minor 
details. The definition of the three points S, POI and COC remain the same, as well as those 
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of the unit vector ξ
r

 and auxiliary point µ. Only the second unit vector η
r

 has a reversed sign 
since in this case µ is located below S instead of above: 
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Normalization constant C is still given by (V-21). Arbitrary point ( )( )ηξγγκκ ,'sin,'cos −=

r on 
the refracted beam is now given by: 
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and the angles αm+1 and βm+1 follow from (V-22). 
 
This model has been tested for off-axis sources using the anterior segment of the Navarro eye 
model, with incident light at an angle of 20º and 40º (Figure V-6 a and c). When these results 
are compared with results obtained with commercial ray tracing software (OSLO LT 6.1) it 
can be seen that the results roughly correspond with each other (Figure V-6 b and d). 
 

 
Figure V-6: results of the three-dimensional ray tracing algorithm described above applied to 
the Navarro model with rays incident at angles of 20º (a) and 40º (c). This is compared with 
the results provided by OSLO LT 6.1 (b) and (d). 
 
 

V.3 Peripheral wavefront measurements  
 
Applying these reconstruction procedures described earlier on the Navarro eye model, a low-
resolution estimate of the aberration distribution in the anterior eye segment can be obtained 
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within a biconical volume of ±80 mm3. This is the region where the ray tracing of each of the 
measured peripheral wavefronts have overlapped. The volume, shaded gray in Figure V-1, is 
the widest at the pupil aperture and comprises parts of the cornea, the anterior chamber and 
the crystalline lens. It ranges from ±1mm in front of the anterior surface of the cornea to 
±0.1mm in front of the posterior surface of the crystalline lens. 
 
 
V.3.1 Peripheral aberration data 
 
The above calculations will first be applied to single Zernike polynomials: defocus Z2

0, 
astigmatism Z2

2 and coma Z3
1, corresponding to the most common terms in peripheral 

aberrometry. The amplitudes of these terms were assumed the same for each of the 36 
projections and were rotated in each position to maintain the orientation of the aberrations 
with respect to the eye. 
Next we use two models for peripheral aberrations: one defined by adding 2 µm of defocus 
Z2

0, astigmatism Z2
2 and coma Z3

-1 and the Navarro eye model. Again these aberrations were 
assumed the same in all directions (see Figure V-7, first two lines). 
The peripheral aberrations measured and published by Navarro121 were also used (subject 
EM, right eye). Since these aberrations were only measured in the temporal field (nasal retina) 
it was assumed that the wavefront aberrations would be uniform along each hemi-meridian. 
The wavefront data was scaled down from a 6.7mm pupil to 6mm to facilitate the comparison 
with the other data. Again the wavefronts were rotated for each position (Figure V-7).  
Atchison measured the right eye of 5 subjects (Spherical equivalent ranging from +1.5D till -
2D) along the full horizontal meridian, of which the RMS122 and refractive values123 were 
published. This author showed that the assumption that aberrations are uniform in each 
direction is not correct since there is a clear difference between the wavefront amplitudes of 
the nasal and the temporal field (as was also demonstrated for the refraction in references 
[124], [125] and [126]). For subjects DS, DA and LS this dataset provided Zernike coefficient 
values for the directions θ = 0º and θ = 180º; in other directions we used interpolations of  
 

 
Figure V-7: peripheral wavefront measurements of the different data sets at an angle of 
incidence ψ = 40º.  Steps correspond to increments of 1µm. 
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these values for our reconstructions (see Figure V-7, second and fourth column). The data 
from the other two subjects was treated in the same manner as the Navarro data.  
Both the Navarro and the Atchison subjects were measured at a wavelength of 543nm and 
under full dilation and cycloplegia by means of a 1% solution of cyclopentolate.  
Finally we performed a number of peripheral wavefront measurements ourselves using a 
Zeiss/ Meditec WASCA aberrometer (Figure V-8). The technical details of this device were 
discussed in Chapter II and will not be repeated here. This device was chosen because of its 
high resolution and the ‘zonal reconstruction’, which makes it possible to measure non-
circular pupil areas. This was necessary since the pupil shape will flatten by a factor cos ψ 
under an angle of incidence ψ (see appendix B in [123]). A clock shaped grid attached to the 
measurement head was used as a fixation target.  
The wavefront data of one right eye (Spherical equivalent +4.5D) was measured along twelve 
hemi-meridians (30º increments) and at four angles of incidence ψ (0º, 20º, 30º and 40º). Each 
measurement was repeated three times and averaged. The subject was dilated using one drop 
of 0.5% Tropicamide. During the measurements another drop was administered after each 
hour passed.  
 

 
Figure V-8: twelve peripheral wavefront measurements after subtraction of on-axis defocus 
term and multiplication with a circular pupil for subject LG at angle of incidence ψ = 40º. 
Each step corresponds with 2µm.  
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Figure V-9: change in pupil shape over the horizontal visual field for subject LG. 

 

V.3.2 Discussion 
 
From the higher order aberration data presented both in Figure V-7 and Figure V-8 it can be 
seen that astigmatism and coma-like aberrations are the most influential. Both types of 
aberrations increase rapidly with increasing ψ121, 122, resulting in images similar to the 
defocus-astigmatism-coma model. At the same time the defocus seems to vary in a more 
irregular way (see [121] and the Atchison data).  
Comparing the aberrations of real eyes with those of the two model eyes, it can be seen that 
overall they have similar shapes. However the aberrations of the individual real eyes are less 
symmetrical with respect to the horizontal axis than the models. This asymmetry may be 
attributed to, among others, irregular deformations of the refractive surfaces and minor 
differences in direction of optical axes between the cornea and the crystalline lens15, 127. Note 
that the averaged Atchison data, containing data from all his series, is much more 
symmetrical. 
The Atchison data (right hand in Figure V-7) also shows that the shapes and amplitudes in the 
temporal and the nasal fields differ both in shape and in amplitude. This is possibly due to a 
slightly tilted lens and/ or pupil. In general the aberrations are found to be larger in the nasal 
field, which is confirmed by our own data (Figure V-8). One possible reason for this 
difference is that the nasal field is more used for vision nearby.  
When the change in pupil shape is studied (Figure V-9), it is found that it does not follow the 
theoretical model123, even though it accurately describes the pupil coordinates. In the case of 
subject LG the pupil flattens when the angle of incidence is increased on the temporal side. 
On the nasal side however this does not occur and the pupil remains more or less round. This 
could be an indication that the pupil plane of this eye is not perpendicular to the line of sight, 
but rather tilted by 10-20° in the nasal direction. Since LG has a rather severe hyperopia it is 
possible that in the course of her life her crystalline lens and pupil have slightly tilted to 
obtain a better near vision. Similar variances in pupil shape across the visual field have been 
reported as well by Atchison128.  
 

V.4 Reconstructions 
 
V.4.1 Validation of the reconstruction techniques 
 
a) Validation of pupil plane reconstructions 
 
In order to test the validity of both the reversed ray tracing and the tomosynthesis methods, 
we did a number of numerical simulations using a Navarro eye model. Since in this 
simulation we no longer depend on previously measured data, all recording and 
reconstruction parameters could be chosen by ourselves. Apart from the angle of incidence ψ, 
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which was increased to 48˚, all parameters were taken the same as before. This is the angle 
under which the smearing effect found in backprojection reconstructions is minimal, but 
where the peripheral aberrations are still measurable for real eyes.  
First the off-axis aberrations for ψ = 48˚ were calculated and the rotation symmetrical Zernike 
terms (defocus Z2

0 and spherical aberration Z4
0) were neglected to avoid their distorting 

influence (seeV.4.1b). The reconstruction is made for three different objects: one unaltered 
model (Figure V-10, first column), one with a centered radial sine distortion (refractive index: 
n ± 0.5) in the pupil plane (Figure V-10, second column) and one with a decentered radial sine 
distortion (Figure V-10, third column). The pupil planes of each of the original objects are 
shown in the first line. These objects are reconstructed using tomosynthesis (second line) and 
reversed ray tracing (third line).  
The tomosynthesis reconstruction (see IV.2.2a) shows for the unaltered eye model a slightly 
dark central region that was not originally there. For the other two objects it can be seen that 
the sinusoidal patterns are superimposed on the intensity distribution of the unaltered model. 
The patterns themselves are reconstructed well.  
The refraction corrected reversed ray tracing reconstruction (see V.2.2) of the pupil plane 
shows similar properties. In this case the unaltered model shows dark faint circles which are 
artifacts inherent to the method and can be reduced by increasing the number of data points in 
the projections. The reconstruction of the altered models again show sine patterns 
superimposed on the artifacts, resulting in a certain distortion of the pattern. This is mainly 
seen in the off-axis object. 

 
Figure V-10: pupil plane reconstruction (ψ = 40°, N = 36) of the Navarro model using 
tomosynthesis and reversed ray tracing.  
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The previous results have been recalculated for sine patterns with amplitudes down to n ± 
0.005. Using tomosynthesis and under full correction of the defocus and the spherical 
aberration the pattern can still be distinguished. Reversed ray tracing on the other hand has 
trouble reconstructing these small differences, partially due to the annular artifacts. 
One other reconstruction property that can be tested is the resolution along the optical axis δn. 
In order to do this a plane 1mm anterior to the pupil plane is reconstructed using both 
methods. In all six reconstructions a bright edge can be seen due to the smearing of the 
lenticular aberrations. In the center however no patterns can be distinguished, with the 
exception of the off-centre tomosynthesis reconstruction. This is an indication that the 
resolution δn along the optical axis is higher for reversed ray tracing than for tomosynthesis.  
 
 
b) Contribution of single Zernike polynomials 
 
When the Zernike decomposition is made of a peripheral wavefront, it can be seen that these 
are mainly composed of the defocus Z2

0, astigmatism Z2
2 and coma Z3

1 terms. In this section 
the individual contribution of each of these three terms is studied using reversed ray tracing. 
The amplitudes of the projections are chosen to be -3µm for the defocus Z2

0 and 3µm for the 
astigmatism Z2

2 and coma Z3
1. The peripheral aberrations are assumed to be uniform in all 

directions.  
In Figure V-11a the reconstruction of a single defocus term is shown. Comparing the 
reconstruction with the model overlay it can be seen that no distinction can be made between 
the different eye segments. Only at the anterior and posterior tips and the superior and inferior 
edges of the central volume slightly darker areas are present, due to the overlap of the 
negative values from the defocus edges in those areas. Similar effects are found for other 
rotation symmetric aberrations, such as the various orders of spherical aberration, which 
reconstruct into checked patterns. 
. 

 
Figure V-11: laminographic reconstruction (ψ = 48°, N = 36) for (a) -3µm pure defocus Z2

0, 
(b) 3µm pure astigmatism Z2

2 and (c) 3µm pure coma Z3
1.  
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In the reconstruction of the astigmatism (Figure V-11b) two maxima can be distinguished in 
the cornea and the lens. This roughly, but inaccurately, represents the aberration distribution 
in the cornea and the lenticular nucleus.  
The result from the single coma term (Figure V-11c) seems to be in closer accordance with 
the expected refractive index distribution of a true eye. This gives an indication of the origin 
of the large presence of coma-like aberrations found in higher order Zernike decompositions 
of peripheral wavefront data. There is a clear difference between a dark area, located at the 
anterior chamber, and a bright area in the crystalline lens. In the front tip is another bright 
area, corresponding to the cornea. The gray values in the top and bottom part of the anterior 
chamber and lens seem to be smeared out.  
A simulation using OSLO LT shows that the manifestation of the defocus term, and part of 
the astigmatism term, is mainly due to a combination of the cornea and the ocular length. As 
most of the cornea is not located in the reconstructable volume in Figure V-1 the defocus term 
in the wavefront projections can be disregarded. In some cases, where it is beneficial to the 
quality and the contrast of the reconstruction, this is also done for the astigmatism terms. This 
operation, corresponding to correction of the spherical and cylindrical errors of the eye in that 
direction, will reduce the blurring of the reconstruction 
 
 

V.4.2 Navarro data 
 
If reversed ray tracing is applied to the data of Navarro’s subject EM we find the result in 
Figure V-12. For this reconstruction 36 identical projections are used under an angle ψ = 40º. 
This is done for two situations: Z1

1, Z1
-1 and Z2

0 = 0 (Figure V-12a) and for the higher order 
aberrations only: Z1

-1, Z1
1, Z2

-2, Z2
0 and Z2

2 = 0 (Figure V-12b). 
It is found that for the higher order reconstruction the cross-section has more contrast, giving 
a clear image comparable to that of the coma term alone (Figure V-11c). The different ocular 
structures are well visible near the optical axis of the Navarro model. Away from the optical 
axis smearing effects take their toll. Note that due to smearing the reconstructed cornea 
appears to be in front of the model cornea. 
The pupil plane reconstruction is rotation symmetric for both situations due to the repeated 
use of the same projection. Therefore the information content of this plane is rather low and 
will not be shown here. 
 

 
Figure V-12: anterior segment reconstruction (ψ = 40°, N = 36) for Navarro’s subject EM. 
(a) Tilt and defocus disregarded; (b) higher order aberrations only. 
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V.4.3 Atchison data 
 
a) Reversed ray tracing 
 
Reconstruction of the interpolated Atchison data reconstructed under 40° gives the result 
shown in Figure V-13. It can be seen that despite the asymmetrical distribution of peripheral 
aberrations in the data set (see Figure V-7) neither the reconstruction of the horizontal (x,z) 
cross-section plane, nor the vertical (y,z) cross-section plane shows any large scale asymmetry 
for each of the three subjects. In the pupil plane however a shadow is seen on the temporal 
side for all subjects, which might be an indication for a tilted lens. Such lens tilts have already 
been found using MRI imaging129, 130. 
 

 
Figure V-13: reversed ray tracing reconstructions (ψ = 40°, N = 36) for three subjects of the 
Atchison data set. Tilt and defocus terms are disregarded in each projection and the pupil 
diameter is 6mm. 
 
 
b) Pupil reconstruction by tomosynthesis and spiral scan 
 
Tomosynthesis and Spiral Scan applied to the Atchison data for several angles of incidence ψ 
gives the pupil reconstructions in Figure V-14, where the asymmetrical aberration 
distributions seen in Figure V-13 are also found. For ψ = 10° first a distribution resembling a 
spherical aberration is found, but with increasing ψ values the central peak shifts in the nasal 
direction. At ψ = 40° the distribution closely resembles a coma aberration. 
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Figure V-14: tomosynthesis and spiral scan reconstructions (N = 36) for three subjects of the 
Atchison data set. In each projection the tilt and defocus terms are disregarded. Steps 
correspond to increments of 1 µm and the pupil diameter is 6mm (Left = T, right =N).  
 
 
The Spiral Scan reconstruction in Figure V-14 and the pupil plane in Figure V-13 show a 
close correspondence with each other, both in aberration shape and amplitude. This reinforces 
the previous assumption of a slightly tilted lens for all three subjects. 
 
 

V.4.4 Full-field measurements 
 
The reconstruction of the full-field data of subject LG is shown in Figure V-15. Since this is 
the only dataset we have measured ourselves, it was possible to determine a number of 
biometric parameters of this eye. These parameters (see Table V-1) can aide to customize the 
Navarro eye model to the individual characteristics of LG’s eye. 
Due to large amounts of smearing the quality of the 3D reconstructions is not very high, both 
for the case with the tilt and defocus subtracted from the peripheral aberrations and for the 
higher order peripheral aberrations alone. The pupil plane reconstructions by reversed ray 
tracing are remarkably uniform, with only a slight shadowy region in the upper nasal part. 
The tomosynthesis reconstruction shows less uniformity, with a minimum in upper nasal 
section.  

Table V-1: biometrical data of LG’s right eye 

Ocular refraction 4.50D, -0.50D @ 125°  * 
Anterior corneal radius 8.13mm** 
Posterior corneal radius 6.50mm** 
Central corneal thickness 0.692mm** 
Anterior chamber depth 3.17mm† 
Ocular length 22.52mm† 
Lens thickness 4.17mm‡ 

   * Nidek ARK-700 autorefractometer 
   ** Bausch & Lomb Orbscan II 
   † Zeiss IOL master (based on OCT) 
   ‡ Alcon Ophthascan ultrasound biometer 
 
 



 - 115 -

 
Figure V-15: full-field reconstruction of subject LG’s right eye (ψ = 40°, N = 36). Steps 
correspond to increments of 1 µm and the pupil diameter is 6mm. 
 

V.5 Conclusions 
 
From the previous result we can conclude the following: 
 

• Neither reversed ray-tracing, nor tomosynthesis are very reliable techniques for the 3D 
reconstruction of the aberration sources due to the many smearing artifacts that 
influence the quality of the reconstruction.  

• Both techniques give a reasonable reconstruction of the pupil plane, where 
asymmetries can be found. These asymmetries are related to a tilt in the pupil or the 
crystalline lens. The results of both techniques confirm each other. 

• Tomosynthesis takes considerably less time to reconstruct the pupil plane, but 
reversed ray tracing is capable of reconstructing the whole eye at once. Given the 
low quality of the 3D reconstructions, the short calculation times of tomosynthesis 
make this the preferred technique for pupil plane reconstructions. 

 
An example of how to make a practical realization of a tomographic scanner capable of 
automatically measuring the peripheral aberrations of the eye is described in [169]. 
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PART III 
 
 

Design and first results of a Curvature 
Sensing Aberrometer 

 
 
 
 
 
 
 
 
 
 
 
 

Up till now each of the discussed aberrometers used a rather coarse 
subsampling of the pupil plane by means of a number of skewed rays to 
determine aberrations. Therefore these aberrometers only have a limited 
resolution compared to e.g. interferometry. In this part a new kind of 
aberrometer will be presented, based on curvature sensing. This device 
is capable of achieving the highest possible resolution, the camera pixel 
size, without the need of lengthy calculations.   
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Chapter VI Principles of curvature sensing 
 
VI.1 Introduction 
 
Curvature sensing was invented for adaptive optics applications in astronomy. Here real-time 
compensation of continuous changing atmospheric wavefront aberrations is important to 
improve stellar image quality. Up till now curvature sensing has been incorporated in a 
number of large telescopes, the most famous of which is ESO’s Very Large Telescope in 
Chile.  
Recently new applications were found in many different fields of imaging, going from 
astronomy and optical microscopy, to transmission electron microscopy131,132, neutron 
radiography133, X-ray imaging134, and many other domains. An application in ocular 
aberrometry was recently suggested135, but to our knowledge it has not been implemented yet.  
In this chapter the properties of curvature sensing are discussed for general purposes. This 
will be narrowed down to wavefront sensing in Chapter VII 
 
 
VI.2 Mathematical principles  
 
VI.2.1 Derivation of the technique 
 
This method is based on the observation that wavefront aberrations can have a minute 
influence on the intensity distributions in planes near the best focus. This is shown in Figure 
VI-1 for the case of a pupil under uniform illumination. Here the bold line represents the 
wavefront, the dashed line is the ideal plane wave and individual rays, perpendicular to the 
wavefront, are indicated by the arrows.  
For plane waves the rays are parallel, which results in a uniform intensity distribution on a 
screen placed slightly behind the pupil opening. An aberrated wavefront however will show 
locally converging and diverging rays, which gives rise to brighter (convergent) and darker 
(divergent) areas. In every-day life this effect can be observed in the scintillating patterns on 
the bottom of a swimming pool.  
From these intensity patterns the aberration of wave in the pupil plane can be derived using 
the paraxial approximation136, 137 of the Fresnel diffraction theory138: 
 

 
Figure VI-1: 2D illustration of curvature sensing of a uniformly illuminated pupil.  
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with z taken in the direction of the optical axis and ⊥⊥ ∆=∇ 2 the Laplacian calculated in the 
(x,y) plane. This can be solved by a wave equation: 
 
 ( )yxieyxIyxu ,),(),( ϕ=                   (VI-2) 
 
where I(x,y) is the intensity of the light in the image plane and φ(x,y) the wavefront aberration. 
When (VI-2) is filled in into (VI-1) and multiplied by u*(x,y), the complex conjugate of (VI-
2), and u*(x,y) is filled in separately into (VI-1) and multiplied by u(x,y). Adding these two 
results gives: 
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and if they are subtracted we find: 
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with 






∂
∂

∂
∂=∇⊥ yx , is the gradient operator in the (x,y) plane and ⋅∇⊥  the divergence. 

Equation (VI-3) is called the Transport of Wavefront Equation (TWE) and describes the 
change in wavefront along the optical axis. Solving this for φ(x,y) is not an easy task since 
∂φ(x,y)/∂z cannot be measured. The second equation on the other hand contains ∂I(x,y)/∂z, 
which is found by taking the difference between the intensities measured in two closely 
spaced planes near the image plane. Formula (VI-4) is known as the Transport of Intensity 
Equation (TIE), as it describes how a change in intensity along the z-axis is related to the 
curvature (first term, right hand side) and the slope (second term) of the wavefront aberration 
in the image plane.  
The problem can be simplified considerably by assuming the image consists of a bright region 
Γ of constant intensity I0 within a region of zero intensity: 
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( )
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This restricts the effect of the curvature term to Γ as the intensity is zero elsewhere. The 
gradient term has now only influence on the edge Ω of Γ, since only there ( ) 0, ≠∇⊥ yxI . 
Applied to telescopes and adaptive optics (VI-5) is accepted as a reasonable assumption139, 140. 
In the absence of a large Stiles-Crawford effect141, 142, this is also valid for human eyes. In 
both cases Γ is considered a circular opening. 
In order to solve the TIE analytically boundary conditions need to be defined. These are found 
by filling (VI-5) in into (VI-4): 
 



 - 121 -

 ( ) ),(),(),( 2

0

yxyxH
z

yxI
I
k ϕδϕ ⊥Ω⊥ ∇⋅+∇Γ=

∂
∂

−                (VI-6) 

 
with H(Γ) the step function defined in Γ (1 inside Γ and 0 outside) and δΩ the Kronecker delta 
defined on contour Ω of Γ. Equation (VI-6) shows that the change in intensity along the z-axis 
depends on two separate components that both need to be determined: 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( )









=
∂

∂
−=∇

=
∂

∂
Γ−=∇

Ω⊥

⊥

yxg
z

yxI
I
kyx

yxf
z

yxIH
I
kyx

,:,,

,:,,

0

0

2

δϕ

ϕ
                (VI-7) 

 
which is the Poisson equation with Neumann boundary conditions. Here functions f(x,y) and 
g(x,y) are assumed to be continuous and smooth respectively over Γ and Ω.  
It has been demonstrated143 that for these boundary conditions and in the absence of points 
where I(x,y) = 0 the TIE has a unique solution. Points of zero intensity will serve as 
singularities, causing the loss of the solution’s uniqueness144.  
 
In practice there are several different methods to solve the TIE. The most important ones 
mentioned in the literature will be described in the following. 
 
 
VI.2.2 Reconstruction techniques 
 
a) Optical solution of the Poisson equation 
 
This method139, 145 uses the fact that the dynamic equation of a bimorph or a membrane mirror 
in function of the control voltage distribution is very similar to the Poisson equation. By 
solving equations (VI-7) in terms of the voltage and applying the result in a closed loop to the 
adaptive mirror the wavefront is immediately compensated.  
 
 
b) Green’s function solution 
 
This solution was proposed by Teague138 and later by Woods and Greenaway146. It uses 
Green’s second theorem and Green’s functions ( ) ( )'')',';,(2 yyxxyxyxG −−=∇⊥ δδ  to find: 
 

 ( ) ( ) ( ) ''',';,,,
0

dydxyxyxG
z

yxI
I
kyx ∫Γ ∂

∂
−=ϕ                 (VI-8) 

 
This can be solved with a polynomials series approximation ui(x,y): 
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Suppose now that ui(x,y) = δ(x-xi)δ(y-yi), which is an orthonormal base, and ∂I/∂z is split up in 
it’s pixel components: 
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with j = 1,…, N2 a the number of pixels in the image and dj the intensity of the individual 
pixels. This is filled in in (VI-9): 
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Using the Green’s function solution of a 2D Poisson equation: 
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we find: 
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which can be calculated as a system of equations. However, since the size of this of this 
system is [N2xN2] the calculations can become lengthy for large images, making it less 
suitable for real-time applications. 
 

c) Reconstruction using polynomial series 
 
The TIE can also be solved using the least squares fitting of orthonormal polynomials in a 
way similar to I.4.2a). This has been done for Zernike polynomials (in uniform147 and non-
uniform148 lighting conditions), Legendre polynomials149, Karhunen-Loève polynomials150 
and Appell-Kampé de Fériet polynomials150. Another paper151 proposes a direct integral 
solution for the determination of the best fit.  
The polynomial solution of the TIE starts from the assumption that the phase φ(x,y) can be 
approximated by a orthonormal series of polynomials un(x,y) defined over an area Γ: 
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If (VI-4) is multiplied on both sides by un(x,y) and integrated over Γ  we find: 
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The expression on the left-hand side is the nth polynomial coefficient of -k∂I/∂z and will from 
now on be called Fn. Filling (VI-14) in into the right-hand side of (VI-15) gives after 
simplification148: 
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Defining a polynomial mode matrix M: 
 
 ( ) ( ) ( )∫Γ ⊥⊥ ∇⋅∇= dxdyyxuyxuyxIM nmnm ,,,              (VI-17) 

 
which leads to: 
 
 FMa 1−=                   (VI-18) 
 
A proof for the invertibility of M is given in [148]. In order to solve the TIE system (VI-18) 
needs to be solved, which can be done in a straight forward manner. However generating 
matrix M can take a long calculation time, depending on after how many terms the 
polynomial series is truncated.  
The use of polynomial series has the advantage that the whole phase can be characterized by a 
limited number of coefficients. More coefficients yield better results, but also longer 
calculation times for M.  
 
 
d) Algebraic solution of the Fourier series 
 
Van Dyck152 proposed a method in which the amplitude ( ) ( )yxIyxA ,, =  and the phase 
φ(x,y) of the aberrated light are decomposed into Fourier series: 
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with ( )yxr ,=

r the coordinates in the image plane and ( )vu,=ρ
r  those in the Fourier plane. 

Substituting (VI-19) into the TIE written in terms of the amplitude (see [152]) and rearranging 
the corresponding terms we find: 
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This is a large system of N equations and N unknowns ( )rrr

'ρϕ  with N the number of pixels in 
the image. ( )zA 'ρρ

rr
−  is a convolution factor, where 'ρρ

rr
−  indicates the vector centered in the 

origin with the same length and direction as 'ρρ
rr

− . Solving system (VI-20) directly gives the 
exact solution for φ(x,y). 
As in the previous method this method is time consuming due to the large dimensions of the 
matrix [N2xN2].  
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e) Direct iterative solution153 
 
This solution uses the substitutions: 
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so (VI-4) becomes: 
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                    (VI-22) 
where dx and dy were assumed to be 1 pixel. Formula (VI-22) can now be rewritten to a 
system of equations in φ(x,y): 
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                    (VI-23) 
This system can easily be solved in an iterative way by estimating an initial solution, such as 
the zero matrix or a Gaussian, and filling this in into (VI-23). After a number of iterations this 
should give an approximation of the phase φ(x,y).  
For this method the periodic boundary conditions were used: 
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which means that the image is numerically wrapped around a sphere. 
 
In principle these calculations can approximate the solution pretty well, but it usually takes a 
while due to the large number of iterations. 
 

f) Reweighing of Fourier terms 
 
Here (VI-4) is again solved using Fourier series of the wavefront aberration φ(x,y) and of the 
z-derivative of the intensity: 
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Filling this in into the TIE (see [154]) gives a system of equations that for a homogeneous 
intensity I0 can be simplified to: 
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with (a,b) the dimensions of the image. This provides a very fast method to obtain the Fourier 
transformation of the phase directly. An inverted Fourier transformation then provides the 
phase φ(x,y) itself.  
For non-homogeneous illuminations however the system of equations cannot be simplified, 
resulting again in lengthy calculations. 
 
 
g) Fourier solution of inverted Laplacian155, 156 
 
This is actually an extension of the reweighed Fourier terms method. Following the 
description given in [156] it starts from the TIE and the definition of a function C(x,y):  
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So (VI-4) becomes the Poisson equation: 
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Taking the inverse Laplacian of both sides, followed by a gradient gives: 
 

 ),(),(2 yxC
z

yxIk ⊥
−
⊥⊥ ∇=








∂
∂

∇∇−                (VI-29) 

 
which, using (VI-27), becomes: 
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Applying the divergence operator ⋅∇⊥ and another inverse Laplacian to (VI-30), we find the 
solution:   
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It is very difficult to solve this equation directly. Instead a Fourier approach is used to arrive 
at156: 
 
 ( ) ( ) ( )( )yxyxByx yx ,,, ϕϕϕ +=                (VI-32) 
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where { }⋅ℑ denotes the Fourier transform, { }⋅ℑ−1 the inverse Fourier transform, and (u,v) the 
coordinates in the Fourier plane. B is a normalization constant, needed to obtain quantitative 
phase results, with value:  
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Here λ is the wavelength of the light used, N and M the image size (in pixels) and ∆x the pixel 
size.  
 
This method is a very fast way to obtain the phase data, however a couple of restrictions apply 
as to what can be reconstructed: 
 

• Equations (VI-33) become singular in the origin (u,v) = 0. Instead of a division by 
u2 + v2 = 0 a multiplication is used in this point. 

• Points where I(x,y) = 0 also introduce singularities. The strong influence of low 
intensities can be avoided by not calculating the phase in those points below a 
certain intensity threshold.   

 
Due to the speed of this algorithm and the absence of the need for uniform illumination, this is 
chosen as the preferred method for our further reconstructions. 
 
 
VI.2.3 Determination of ∂I/∂z 
 
All of the above techniques require, besides the intensity distribution of the image, good 
knowledge of the derivative ∂I(x,y)/∂z  near the best focus. This is usually approximated by 
taking the difference between two out-of-focus images, one in front of the best focus (I- or 
‘Intrafocal image’) and one behind best focus (I+ or ‘Extrafocal image’), and dividing by the 
separation 2δz between the two image planes. As in geometric optics rays are considered as 
straight lines these two images suffice to estimate the behavior of each individual ray near 
best focus.  
Not much has been published about what the ideal separation 2δz should be. Keeping 
geometric optics in mind, it can easily be understood that smooth, slowly varying wavefronts 
require a large separation since the tilts of the rays will only be very small. Wavefronts that 
have a number of large local variations on the other hand need a shorter separation distance as 
their effect on the ray directionality is more pronounced.  
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Moreover image noise can also play a role here, but this can be easily reduced using the 
average of a number of defocus images at the same positions ±δz or the use of multiple 
defocus distances and combining the reconstructed phases by means of high- and low-pass 
filters157.  
If some prior knowledge is available about the wavefront to be determined the method 
described in [158] can be used. This uses the standard deviation of the noise and the mean 
curvature of the wavefront to estimate an upper and lower bound for 2δz, as well as an 
optimal value. In case this optimal separation is too small to achieve by means of the 
available hardware it is possible in some cases to use interpolation152 between the closest 
defocus images; however this procedure cannot improve the best attainable resolution. 
Several papers159, 160 also mention the use of one single defocus image for the calculation of 
∂I(x,y)/∂z. This will not be discussed here. 
 
 
VI.2.4 Influence of noise  
 
Up till now only ideal, noise free situations were discussed. Adding increasing quantities of 
noise can have a large influence on the final image quality, as brighter and darker areas 
shaped like irregular ‘clouds’ appear (Figure VI-2). 
In an effort to model these effects we suppose the intrafocal image I+ is superimposed with 
Gaussian (white) noise n+ and analogously the extrafocal image I- has noise n-.Then it follows 
that: 
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Figure VI-2: the effect of noise on the phase reconstruction (Image: mouse blood cell, 40x, δz 
= 1.5µm) 
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and, as formula (VI-33) is linear, we can say: 
 
 ( ) ( ) ( )yxyxyx noisedistorted ,,, ϕϕϕ +=                (VI-36) 
 
In other words: the distorted phase reconstructions of Figure VI-2 are a linear superposition of 
an ideal phase term and a noise term. This means that if Noise(x,y) or φnoise(x,y) is known the 
undistorted phase can be found using formulae (VI-35) and (VI-36). Unfortunately there is no 
direct way to determine either one of these functions. Sometimes however, in case the spatial 
frequencies of undistorted phase are much higher then those of the noise ‘clouds’, an 
estimation of φnoise(x,y) can be made. Here band-pass filters can be used to separate both 
components, as is illustrated in Figure VI-3 for two low-pass filters subtracted from a 
distorted phase*: 
 

• Pixel-per-pixel average over nearest neighbors  
• Low-pass Fourier filter  

 
If the spatial frequencies of the image and the noise cannot be clearly separated, or when 
quantitative phase values are needed, the use of band-pass filters is not appropriate as it would 
inevitably have a large influence on the undistorted phase reconstruction as well.  
In case several sets of defocus images are available, each taken at different separations δz, it is 
possible to use a combination of these sets using band-pass filters157. This method works well, 
but requires longer calculation times as the phase needs to be calculated multiple times.  
 

 
Figure VI-3: reducing the influence of noise in the reconstruction by means of low-pass filters 
(Image: axons of nerve cells, 40x, δz = 1.5µm). 

                                                 
* This method is used for illustrative purposes and is equivalent to applying a high-pass filter to the distorted 
phase. Using a low-pass filter on ∂I/∂z gives similar results. 
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VI.2.5 Measuring defocus images 
 
There are several methods to obtain defocus images. The most common ones are described in 
the following. 
 
a) Serial optical methods to obtain defocus images 
 
One method sends the aberrated wavefront through a set of relay lenses (see Figure VI-4). By 
moving one of these lenses along the optical axis over a distance ±δz the defocus images I+ 
and I- are obtained.  
In case of a plane wave (Figure VI-4a) the PSFs in the intra- and extrafocal planes will be 
exactly the same. After passing the second lens, both I+ and I- are therefore also exactly the 
same. Filled in in (VI-20) this results in φ(x,y) = 0. An aberrated wavefront however shows 
different PSFs in the intra- and extrafocal points (Figure VI-4b), so I+ and I- are no longer the 
same and (VI-20) can be used to calculate the phase. 
This serial defocus method by means of lenses is often used in microscopic applications. 
Although it is easy to perform, it is not very convenient for real-time applications. A variation 
 

 
Figure VI-4: change of the PSF near the focus of a plane wavefront (a) and a wavefront with 
defocus Z2

0 and spherical aberration Z4
0 (b). 
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of this technique is found in astronomy161, where it is important to monitor atmospheric 
turbulences in (nearly) real-time in order to compensate for the induced aberrations using 
adaptive optics. Here the set of relay lenses is immobile, but a membrane mirror is placed in 
the focal point in between.  
By applying a certain vibration frequency to the mirror it is possible to monitor both defocus 
images with only a minimal time difference. 
 
b) Parallel diffraction methods to obtain defocus images 
 
A simultaneous recording of defocus images can be achieved by splitting the incident beam 
into three different channels, after which each of these channels is then given a different 
defocus state by means of a relay system as in Figure VI-4. In one channel a positive defocus 
is added (intrafocal), the second one remains unaltered (focal) and the third one gets a 
negative defocus (extrafocal). 
One easy way to obtain these three channels is by means of a diffraction grating162 (Figure 
VI-5a), which naturally provides a whole series of channels. Using pinholes the required 
diffraction spots can be selected for further use.  
Combining setup Figure VI-5a with three sets of relay lenses may seem a little over-elaborate, 
but it provides a highly flexible system for the measurement of the defocus images. 
A very elegant variation of the regular gratings are the ‘quadratically distorted gratings’ 
proposed by Blanchard and Greenaway163, 164, that are designed in such a way that a certain 
amount of defocus is added to each channel (see Figure VI-5b). As a result the focal plane 
now contains the defocused PSF’s of all three channels, which can be restored into the 
required defocus images by adding another lens. The disadvantage of this kind of grating is 
the loss of flexibility since the defocus introduced by a distorted grating is fixed.  

c) Other parallel methods 
 
These include the use of a number of beam splitters for the separation into different channels 
and the use of birefringent materials. Since neither one is mentioned in the literature these 
methods will not be discussed any further. 
 

 
Figure VI-5: diffraction gratings and resulting diffraction patterns of (a) regular grating and 
(b) quadratically distorted diffraction grating. 
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VI.3 Used materials 
 
All of the images in this chapter were recorded using a serial defocus technique by means of 
an Axiovert S135 inverted microscope (Zeiss, Oberkochen, Germany) with Kohler 
illumination (condenser NA = 0.55) equipped with a motorized (x,y)-stage (Märzhauser, 
Wetzlar, Germany), focus-drive and a PAL monochrome CCD-camera (Adimec MX5). The 
available objectives were 5x plan neofluar, 10x phase contrast, 20x LD achroplan and 40x LD 
achroplan.  
 

VI.4 Results  
 
VI.4.1 Comparison of reconstruction techniques 
 
First we compare the quality of the reconstructions and the time required to obtain them for 
five of the above techniques: Green’s function solution (VI.2.2b), Zernike polynomial fit 
(VI.2.2c), direct iterative solution (VI.2.2e), reweighed Fourier terms in case of uniform 
illumination (VI.2.2e) and the Fourier solution of the inverse Laplacian (VI.2.2g). The results 
are shown in Table VI-1 and Figure VI-6.  
All calculations were done using Matlab 6.1 on a 1.1MHz computer with 512Mb RAM for a 
60x60 image shown in the top of Figure VI-6. Since most of these techniques used a ‘filter 
matrix’ of some kind, this part of the calculations is shown separately.  
 
It can be seen that the Green’s function method needs a long time to generate the [N2xN2] 
matrix, but that once this is finished the computation is done quickly. This suggests that this 
method can be sped up considerably in case the filter matrix is determined on forehand (as 
suggested in [146]). However this is not very practical in case images of different sizes are 
processed. Also due to the large size of the filter matrix, only images of maximum 4000 
pixels can be calculated on the computer above. 
The same was found for the reconstruction by Zernike fit, which was done using polynomials 
of up till the 30th order (495 terms). This results in a large matrix M (VI-17) and lengthy 
calculations. However, as for the Greens’ function solution, the filter matrix can be 
precalculated. 
The direct iterative solution does not use a filter matrix and goes straight to the calculation 
itself. The entire procedure takes over 13s for 100 iterations, which is shorter then for the 
previous techniques. Using a faster converging iteration could improve this. 
The calculation times of the last two techniques are remarkably short, both for the 
determination of the filter matrix as for the phase calculation itself. As in these cases the size 
of the matrix is [NxN], much larger images can be processed (up to 16 Mpixels). 
 

Table VI-1: calculation times for the 60x60 image in Figure VI-6 

 Filter matrix (s) Calculation (s) Max. # pixels 
Green’s functions 349 4.62 4·103 

Polynomial fit (495 Zernike terms) 27.75 0.50 12·103 
Direct iterative solution (100x) / 13.38 Tested till 25·105 

Reweighing Fourier terms 0.08 0.12 16·106 
Fourier sol. of inv. Laplacian 0.09 0.11 16·106 
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Figure VI-6: phase reconstructions using five different algorithms (Image: mouse blood cell, 
40x, δz = 10 µm).  

 
Comparing the phase reconstructions by the five techniques (Figure VI-6, center row), it can 
be seen that all techniques give similar results. The reweighed Fourier technique however 
shows a very blurred reconstruction, possibly due to the fact that the requirement of uniform 
intensity, needed for this technique, was not met.  
In order to confirm that these reconstructions show the actual phase distribution the Laplacian 
∆φ is also calculated (bottom row), which should approximate ∂I/∂z (see formula VI-7). All 
techniques show a reasonable (reweighed Fourier) to good (other four) correspondence with 
∂I/∂z. Note the ring shaped artifacts around the object in the Zernike reconstruction Laplacian. 
 
From the previous we can conclude that the short calculation times and accurate results of the 
second Fourier technique make this the most interesting method. For the following 
calculations only this algorithm is used unless stated otherwise. 
 
 
VI.4.2 Comparison with Zernike phase contrast 
 
As up till now there is no direct method to determine the phase of an object, a couple of 
measures need to be found that can be used as a quality check for the reconstructed phase. A 
first example was given in the previous paragraph, where the Laplacian of the phase was 
used. Another, more direct way is the use of Zernike phase contrast images, which are defined 
by:  
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Figure VI-7: Comparison of experimentally measured and calculated bright phase contrast 
images (Image: cervix cells, 10x, δz = 10 µm). 

 
 ( ) ( )[ ] ( ) ( ){ }{ } 2,2/1 ,)0,0(1)0,0(, yxii eyxIaeyxI ϕπδδ ℑ⋅−+ℑ= ±−            (VI-37) 
 
where δ(0,0) = 1 in the origin and  = 0 elsewhere. Usually the transmission of the phase plate 
a is also defined; here the value 0.5 is used.  
This is demonstrated for cervix cells in Figure VI-7, where the left image is experimentally 
measured and the right image is calculated using (VI-37). Comparing these images it can be 
seen that both images are similar, with the noteworthy difference that in the calculated image 
the cell nuclei have considerably more contrast.  
Since brighter and darker regions in both images correspond well, this gives a second 
indication that the phase reconstruction is accurate. 
 

 
Figure VI-8: phase reconstructions of at different separations between the intrafocal and the 
extrafocal plane (Image: cervix cells, 20x). 
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Figure VI-9: phase changes in the sample of Figure VI-8 over a distance dz = 10µm in the 
same grayscale as the phase (intensity multiplied 2000x). 

 
VI.4.3 Dependency of phase resolution with dz 
 
This was briefly discussed in paragraph VI.2.3 and illustrated in Figure VI-8 for a sample of 
cervix cells. Comparing two separations (dz = 10 µm and 30 µm) it can be clearly seen that 
smaller separations dz between the intrafocal and extrafocal planes lead to a higher resolution. 
 
Further, as suggested by formula (VI-3) and reference [165], not only the intensity I changes 
along the optical axis but also the phase φ. Figure VI-9 shows that especially areas with rapid 
phase changes or with a strong curvature tend to vary along the optical axis due to both the 
gradient and Laplacian terms in (VI-3). However this effect only plays a minor role as the 
amplitude of ∂φ/∂z is about 2000 times lower than that of the phase.  
 
 
VI.4.4 Dependency on pupil shape 
 
In a first step towards the problem of ocular wavefront reconstruction the influence of a pupil 
is studied. Suppose now a homogeneously illuminated circular pupil. Here three basic effects 
can occur with the change of focus, each associated with a typical phase error: 
 

• Change in pupil size (Figure VI-10, top row): this gives an annular ∂I/∂z which 
reconstructs to a defocus. 

• Change in pupil shape (Figure VI-10, second row): ∂I/∂z shows four lobes, both 
positive and negative, which is reconstructed to an astigmatism. 

• Change in pupil position (Figure VI-10, third row): ∂I/∂z has two long lobes, 
reconstructing to a combination of tilt and coma. 

 
In optical systems the ∂I/∂z will be much more complex then in the above examples as a large 
number of local combinations between shape and shift variations will occur. These 
combinations are the result of higher order aberrations. 
In the reconstruction of a pupil special attention is needed the choice of the image size with 
respect to the pupil size to avoid ‘clipping’ of the pupil. As can be seen in Figure VI-10  
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Figure VI-10: phase reconstructions of basic pupil shapes. 

 
(bottom row) this has a strong influence on the reconstructed wavefront, which has obtained a 
square shape and an inverse sign compared to the top reconstruction.  
 

VI.5 Conclusions 
 
The previous examples have shown that: 
 
• Curvature sensing is capable of achieving pixel-size resolutions, far superior to most of the 

non-interference based methods described in I.5. 
• The different reconstruction methods give similar results and differ mainly in calculation 

time and maximum reconstructable image size. 
• The ‘Fourier solution of inverted Laplacian’ method from VI.2.2g) was found to give quick 

and accurate results as was verified by the Laplacian of the calculated phase compared 
with ∂I/∂z and by phase contrast. 

• Noise can seriously affect the reconstruction and can only be neutralized in very specific 
circumstances. Minimizing image noise prior to the calculations is a must. 

• The method gets more sensitive to minute phase variances for short separation distances δz 
between the intrafocal and extrafocal planes. As these short distances increase the 
influence of noise, the use of a high quality camera with a low SNR is advised. 
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Chapter VII Design and first results of a curvature  
sensing aberrometer 

 
With the theories described in previous chapter and the device described in [166] in mind, a 
curvature sensing aberrometer (CSA) can be designed. The design of the following devices 
and the measurements performed with them were done by Andrey Larichev from the Institute 
of Laser Information Technologies of the Stat University of Moscow. The phase calculations 
were done by our group using the methods described in the previous chapter. 
 
 

VII.1 CSA Design 
 
VII.1.1 Proof of principle using the serial lens method 
 
A first proof of principle is given by means of a lenticular CSA (Figure VII-1). The source is 
an IR diode laser (λ = 850nm) the light of which is directed through a beam expander with a 
60µm pinhole placed in between. The pinhole serves as an approximated point source. Next 
the light passes through the object (a glass plate or trial lens) that aberrates the light. A static 
relay system (L1 and L2) projects the image of the object on a CCD camera mounted on a 
linear translation stage. The degree of defocus in the image is controlled by the translation of 
the CCD camera.  
The main disadvantage of this method is that it is serial, meaning that the measurement takes 
a certain time in which an eye can have moved. As shown in VI.4.4 even small movements 
can have a large influence on the wavefront reconstruction, rendering this setup less suitable 
for ocular wavefront sensing. However for the measurement of a static test eye the above 
objection is no longer valid, making it possible to do a second proof of principle. The 
technical parameters of the lenticular serial CSA device are given in Table VII-1. 
 

 
Figure VII-1: serial curvature sensor, using lenses, applied to an aberrated glass plate or 
trial lenses. 

Table VII-1: technical parameters of the CSA components 
 Lenticular CSA (PoP) 

Light source IR diode laser (850nm) 
fL1 50 mm 
fL2 50 mm 

Grating period / 
CCD camera(s) 10 bits 

Lens translation stage Linear stage with µm precision 
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Figure VII-2: parallel curvature sensor, using grating. 

 
VII.1.2 Design of a parallel CSA using the grating method 
 
In order to avoid motion artifacts during the recording phase a parallel recording setup needs 
to be devised (see Figure VII-2 and VI.2.5b). Here the aberrated light beam coming from the 
eye is split up into three separate channels by a linear grating. Next each channel is relayed 
through a telescopic system and projected on a CCD camera. The second lens of each relay 
system can be shifted to obtain defocused images with the desired separation δz.  
The largest disadvantage of this system is that it is much more elaborate and costly in nature 
than the lenticular CSA. However it also creates the possibility of recording short wavefront 
movies that enable the study of temporally changing wavefronts.  
In practice this setup can easily be made by modifying a Hartmann-Shack style aberrometer, 
such as the MultiSpot discussed in Chapter II. 
 

VII.2 First results 
 
VII.2.1 Verification of the method 
 
As a verification of the technique the setup from Figure VII-1 was used to determine the 
aberrations of trial lenses, the results of which are shown in Figure VII-3. Note that the 
alignment of the trial lenses both in the x- and the y-direction as along the optical axis is not 
always equally good, so the phase reconstruction might have been influenced a little. 
For the non-aberrated test eye (Figure VII-3, centre) a slight defocus and spherical aberrations 
can be expected due to the spherical nature of the test eye’s lens. Adding different amounts of 
defocus (Figure VII-3, top row) or astigmatism (Figure VII-3, bottom row) to the test eye also 
shows consistent patterns. 
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Figure VII-3: wavefront reconstructions of a model eye combined with trial lenses. 
 
In order to estimate the quality of these reconstructions the linear Z2

0-model defined in 
Chapter III is used (Figure VII-4). Again the linear fit coefficients for both the defocus and 
the astigmatism can be calculated (Table VII-2) and it is found to agree reasonably with the 
model. The deviations from the model are probably due to misalignments of the trial lenses. 
 
However for this verification only 5 different refraction values were used. A better 
verification can be obtained if more measurements were included, but these were not yet 
available at the time of writing. 
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Table VII-2: linear regression parameters of the datasets given in Figure VII-4 

 a (µm/D) b(µm) R2 

Defocus (Z2
0) -2.5856 -1.092 0.8462 

Astigmatism (Z2
±2) -2.7863 1.204 0.8932 

Model -2.25 0 1 
 
 
VII.2.2 Artificial test  eyes and human eyes 
 
Attempts to obtain measurements of artificial eyes using the setup in Figure VII-2 are 
currently being made. However till date this could not yet be done due to a low light return 
from the retina.  
Later this year these experiments will be modified to include a pulsed laser instead of a 
continuous wave laser. This way higher intensities can be sent to the retina, which will 
hopefully lead to a better signal to noise ratio. Once this is achieved, the experiments could be 
expanded to human eyes as well. 
 

VII.3 Conclusions 
 
The curvature sensing technique promises interesting applications in ocular aberrations 
sensing. However many more experiments need to be done to assess the merits of this method 
compared to more traditional methods such as Hartmann-Shack.  
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Epilogue: conclusions and thoughts on the future 
expansion of this work 

 
 
In this work we have presented different ways to assess the ocular aberrations.  
 
Part I established that overall the 6 aberrometers under study gave similar results for the eyes 
in the test group, but that a number of important parameters showed considerable differences. 
The most notable differences were the large spread in variance, the apparent underestimation 
of several Zernike terms by the Nidek OPD-scan compared to the other devices and the 
apparent overestimation of astigmatism by the Tracey Visual Function Analyzer. As for the 
technical study it was seen that none of the devices fulfilled each of the minimal requirements 
we defined, but that the WaveLight Allegretto, the MultiSpot and the Tracey Visual Function 
Analyzer had implemented most of them.  
In the future this part can be extended to the technical and statistical comparison of the 
customized excimer laser systems that use data from aberrometers to obtain the best possible 
personalized ablation. The questions that need to be asked are the same as for the 
aberrometers, and can be roughly formulated as follows: will the quality of the patient’s 
refractive treatment depend on his ophthalmologist’s choice in aberrometer/ excimer laser 
system, or will all systems give similar results?  
The statistical comparison can be performed on a number of artificial corneas, made of 
hemispherical pieces in PMMA*. In one possible setup the wavefront of one person’s is 
measured by an aberrometer, after which the correction is burned on several plates of PMMA. 
Next the profile of the PMMA plate is compared with its original profile and the ablation is 
known. Comparing the repeated ablation on the different plates will show the repeatability of 
the ablation. This can be done for eyes in a number of refractive conditions. Alternatively an 
artificial test eye can be used as the original aberration. 
This study may also be expanded to include the function of eye trackers, which serve to 
compensate for movements of the patient’s eye during the treatment.  
 
In Part II the refraction corrected laminography was introduced as a method to obtain low-
resolution 3D phase reconstructions of the ocular anterior segment. Overall the quality of the 
3D reconstructions was not very good with both techniques proposed. Only the rough 
distribution of aberration sources could be seen, which mostly corresponded with the 
refractive index distribution in the eye.  
The pupil plane reconstruction on the other hand was more informative and showed clear 
inhomogeneities between the nasal and the temporal sides for several subjects. This was a 
clue that their crystalline lenses may have tilted. 
However these results only present the first steps on the path of refractive ocular phase 
laminography. Many different improvements can be proposed that could only partially be 
included in this work: 
 

• High-resolution wavefront maps should be used, such as zonal reconstruction to obtain 
the highest resolution possible.  

                                                 
* Polymethyl methacrylate; a polymer often used for contact lenses and for testing the beam profiles of excimer 
lasers.  
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• The aberrometer used should be able to reconstruct non-circular pupils. Till date the 
WASCA (COAS) system is the only commercially available system with this 
ability.  

• In the calculations the pupil shape needs to be taken into account in order to find tilted 
pupils.  

• Smearing is reduced with increasing angle of incidence ψ, but at the same time the 
reconstructable volume decreases. For the Navarro model this is optimized at about 
ψ = 48°, although this may differ for real eyes. 

• The reconstruction should use as many projections as possible. 
• Better reconstruction methods need to be used, such as e.g. ART. Finding a good 

method might however pose a number of problems since it is not desirable to record 
the large number of projections that are usually needed for tomography. A number 
of suggestions for improvement can be found in [118], [167], [168] and [169]. 

• In stead of a standard eye model a number of biometrical parameters should be taken 
into account, as was done in Table V-1. 

• The use of internal aberrations alone, obtained by subtracting the corneal aberrations 
from the total aberrations, will also improve the quality of the reconstructions. This 
is easy for anterior corneal aberrations alone, as is done by Atchison in reference 
[170], but rather difficult for the total corneal aberrations. One device that could 
potentially provide this information is the Bausch & Lomb Orbscan, but the software 
necessary for this kind of analysis is not available.  

 
Part III also presented a work in progress. Till date this is limited to a successfully concluded 
proof of principle experiment, but, as written in Chapter VII, many different experiments 
needs to be done before the CSA can be used as a clinical aberrometer. 
 
The ultimate continuation of this thesis would a Part IV that cannot be written yet: ocular 
phase laminography, based on curvature sensing images and using different, more reliable 
tomographic reconstruction techniques. With any luck, we hope to present this within a 
couple of years. 
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 Samenvatting en Conclusies 
 
 
De meeste ogen zijn verre van volmaakt. Ieder oog heeft een unieke set van optische 
aberraties die het invallende licht beïnvloeden. Deze invloeden kunnen gaan van lichtjes 
wazig zicht, tot vervormde of zelfs meervoudige beelden. 
Tot voor kort was de enige manier om hieraan te verhelpen de toevoeging van een extra 
optisch element, zoals een bril of contactlenzen. Het aanpassen van deze twee types van 
optische correcties vereist enkel wat algemene kennis over de oogrefractie, maar de meeste 
patiënten behalen er goede resultaten mee. Toch er blijven nog wat kleine, niet-gecorrigeerde 
aberraties over die volmaakt scherp zicht in de weg staan. 
Met de introductie van refractieve chirurgie kwamen er een aantal nieuwe methodes op de 
markt die trachtten het hoornvlies een zodanig andere vorm te geven dat de aberraties worden 
geminimaliseerd, hetzij door incisies in het hoornvlies, hetzij door middel van laserablaties. 
De eerste generaties van lasersystemen konden alleen maar gelijkaardige correcties 
aanbrengen als wat bereikt kon worden met een bril. Maar in enkele jaren tijd evolueerden 
deze lasersystemen zich tot flexibele platforms die in theorie het inverse van de oculaire 
aberraties kunnen ‘etsen’ op het hoornvlies. Om dit op een goede manier te kunnen doen is 
wel een zeer gedetailleerde kennis van het golffront noodzakelijk. 
 
Eén manier om deze kennis te verkrijgen is door te zoeken naar de oorsprong van de oculaire 
aberraties, zoals getoond in deze thesis. Een aantal verschillende zaken die aberratiemetingen 
en de lokalisatie van de aberratiebronnen binnen het oog beïnvloeden worden hierin 
beschreven. 
 
Eerst wordt er in Hoofdstuk I een inleiding gegeven tot de belangrijkste concepten die nodig 
zijn voor aberrometrie, zoals de meting van een golffront, een aantal afgeleide grootheden 
(RMS, PSF, MTF,…) en een rudimentaire beschrijving van de verschillende 
aberrometertypes.  
 
Na deze introductie wordt er in Deel I ingegaan op de overeenkomsten en verschillen tussen 6 
commerciële aberrometers en de vraag hoe betrouwbaar de metingen zijn die deze machines 
leveren. We vragen ons ook af of ieder toestel hetzelfde resultaat zou geven indien het werd 
toegepast op hetzelfde oog. Hierbij leggen we het accent niet op welk toestel ‘het beste’ is, 
maar eerder op een aantal minimale vereisten waaraan een goede aberrometer volgens ons zou 
moeten voldoen om betrouwbare en reproduceerbare metingen te kunnen leveren (zie 
Hoofdstuk II). Deze technische vergelijking toont dat geen enkele van de bestudeerde 
toestellen voldoet aan al onze minimum eisen, maar dat de WaveLight Allegretto, de 
MultiSpot en Tracey Visual Function Analyzer toch de meeste ervan hebben 
geïmplementeerd.  
Vervolgens trachten we in Hoofdstuk III om de klinische betrouwbaarheid van de toestellen 
te bepalen door een reeks metingen te doen op een vaste groep ogen en een statistische 
analyse van het resultaat. Het blijkt dat alle 6 aberrometers gelijkaardige resultaten geven in 
hun golffrontmetingen, maar dat er toch belangrijke verschillen kunnen optreden als deze 
gegevens in verder detail worden geanalyseerd. Zo is er bijvoorbeeld een sterke spreiding in 
de grootte van de variantie tussen de verschillende toestellen en is er één toestel, de Nidek 
OPD-scan, dat bepaalde symmetrieën lijkt te onderschatten ten opzichte van de andere 
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toestellen. Daarnaast lijkt de Tracey Visual Function Analyzer dan weer het astigmatisme te 
overschatten. 
 
Nadat de kwaliteit van de golffrontmetingen is vastgesteld, kunnen we in Deel II beginnen 
met de zoektocht naar de oorsprong van de oculaire aberraties. Dit leidt ons langs een aantal 
gekende tomografische technieken en hun eigenschappen (Hoofdstuk IV). Vervolgens 
worden deze methodes herwerkt om de oogrefractie in rekening te kunnen brengen. Dit laat 
ons toe om een 3D fasereconstructie te maken van het voorste oogsegment, gebaseerd op een 
aantal off-axis golffrontmetingen. De beschrijving van deze refractiegecorrigeerde 
faselaminografie en de manier waarop de off-axis golffrontmetingen werden verkregen wordt 
gegeven in Hoofdstuk V. Op deze manier verkrijgen we een aantal lage-resolutie 
fasereconstructies die globaal overeenkomen met de brekingsindexverdeling in het oog. De 
kwaliteit van de 3D reconstructies zijn niet zo goed, voornamelijk door ‘uitsmering’, een 
effect waarbij een sterke fasestoring in een gebied de reconstructie in een ander gebied 
beïnvloedt. In de epiloog worden nog een aantal suggesties gegeven over hoe deze 
reconstructies in de toekomst nog verbeterd zouden kunnen worden, zoals het gebruik van 
andere reconstructietechnieken (bijvoorbeeld: ART) en hoge-resolutie off-axis 
golffrontmetingen en het aftrekken van de golffrontbijdrage van het hoornvlies van de off-
axis metingen.  
De reconstructies van het fysiologische pupilvlak zijn daarentegen wel goed gelukt. Hier 
werden duidelijke inhomogeniteiten gevonden, wat kan duiden op een lichte scheefstand of 
verschuiving van de ooglens bij sommige mensen.  
 
Deel III introduceert curvature sensing als een nieuwe hoge-resolutie techniek om golffronten 
te meten. Deze hoge resoluties kunnen worden gebruikt om golffronten in groter detail te 
bestuderen, maar ook om betere off-axismetingen voor laminografische reconstructies te 
kunnen doen. In Hoofdstuk VI wordt curvature sensing, een groot aantal 
fasereconstructietechnieken uit de literatuur en de eigenschappen van deze technieken 
besproken voor algemene microscopietoepassingen. Dit wordt uitgebreid in Hoofdstuk VII, 
waar een proof-of-principle-opstelling wordt voorgesteld die de aberraties van lenzen kan 
meten. Dit is succesvol gedemonstreerd voor een aantal ofthalmologische proeflenzen, zowel 
voor defocus als voor astigmatisme, maar nog niet voor menselijke ogen.  
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